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Abstract: Machine learning (ML) offers promising new
approaches to tackle complex problems and has been
increasingly adopted in chemical and materials sciences. In
general, ML models employ generic mathematical functions
and attempt to learn essential physics and chemistry
from large amounts of data. The reliability of predictions,
however, is often not guaranteed, particularly for out-of-
distribution data, due to the limited physical or chemical
principles in the functional form. Therefore, it is critical to
quantify the uncertainty in ML predictions and understand
its propagation to downstream chemical and materials
applications. This review examines existing uncertainty
quantification (UQ) and uncertainty propagation (UP)
methods for atomistic ML under the framework of proba-
bilistic modeling. We first categorize the UQ methods and
explain the similarities and differences among them.
Following this, performance metrics for evaluating their
accuracy, precision, calibration, and efficiency are pre-
sented, along with techniques for recalibration. These
metrics are then applied to survey existing UQ benchmark
studies that use molecular and materials datasets.
Furthermore, we discuss UP methods to propagate uncer-
tainty in widely used materials and chemical simulation
techniques, such as molecular dynamics and microkinetic
modeling. We conclude with remarks on the challenges and
opportunities of UQ and UP in atomistic ML.
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1 Introduction

Since the breakthrough in image recognition using deep
neural networks (NNs) back in 2012 (Krizhevsky et al. 2012),
machine learning (ML) approaches have been increasingly
leveraged to study complex chemical and materials systems.
They have achieved remarkable successes, from designing
catalysts (Back et al. 2019; Zahrt et al. 2019), to discovering
functional materials (Axelrod et al. 2022; Rao et al. 2022) and
studying protein folding (Baek et al. 2021; Jumper et al. 2021),
to name a few. The ML approaches applied in these tasks
take advantage of a wide range of techniques, but they share
a common core idea: modeling molecules, materials, and
chemical reactions at the atomic scale and looking for
patterns and trends in atomic data, which we refer to as
atomistic machine learning.

One of the most impactful developments in atomistic ML
for chemical and materials science is creating interatomic
potentials (i.e., force fields) to model the interactions
between atoms. This goes from early endeavors that
model individual molecular/material systems (e.g., the
feed-forward NN potential (Behler 2021; Behler and Parri-
nello 2007) and Gaussian approximation potential [GAP]
(Bartok et al. 2010; Deringer et al. 2021)) to more recent
efforts to build universal potentials for the entire periodic
table (e.g., M3GNet (Chen and Ong 2022), CHGNet (Deng et al.
2023) and MACE-MP (Batatia et al. 2024)). While interatomic
potentials remain an active focus of atomistic ML, the
field has moved beyond and expanded to encompass the
prediction of arbitrarily complicated molecular, materials,
and reaction properties (Ceriotti 2022; Fedik et al. 2022).
These include molecular dipole moments (Gastegger et al.
2021; Unke and Meuwly 2019), bond strength (St. John et al.
2020; Wen et al. 2021), high-rank material tensors
(Pakornchote et al. 2023; Wen et al. 2024), neutron, X-ray, and
vibrational spectroscopies (Chen et al. 2021; Schienbein
2023), and reaction rates and yields (Heid and Green 2022;
Wen et al. 2023), among others.

Despite these successes, the reliability of atomistic ML
models remains a significant concern (Heid et al. 2023;
Peterson et al. 2017; Tavazza et al. 2021). The complex and
high-dimensional nature of chemical and materials systems,
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coupled with the limited availability of high-quality training
data, can lead to models that are prone to overfitting,
generalization errors, and poor transferability (Abdar et al.
2021; Gawlikowski et al. 2023; Psaros et al. 2023; Wen et al.
2022). To address these challenges, it is imperative to quan-
tify the uncertainty associated with model predictions,
providing a measure of confidence in the results and helping
to identify areas where the model may be unreliable. The
uncertainties can be broadly categorized into two types:
aleatoric uncertainty and epistemic uncertainty (Abdar et al.
2021; Hillermeier and Waegeman 2021). Aleatoric uncer-
tainty, also known as data uncertainty, arises from the
inherent and irreducible noise in the data used for model
development. In atomistic ML, aleatoric uncertainty can
come from, for example, the inexact exchange-correlation
functional of the density function theory (DFT) employed to
generate the training data (Henkel and Mollenhauer 2021;
Lejaeghere et al. 2016; Ruiz et al. 2005; Wellendorff et al.
2012). Epistemic uncertainty, also referred to as model
uncertainty, accounts for limitations of our knowledge or
assumptions about a model. Factors such as model archi-
tecture, model parameters, and hyperparameter selection
can all contribute to epistemic uncertainty.

Incorporating uncertainty quantification (UQ) into the
ML model development process is a significant step forward;
transmitting the uncertainty from the atomistic ML models
to downstream tasks, known as uncertainty propagation
(UP), is equally crucial (Abdi et al. 2024; Honarmandi and
Arrdyave 2020; Honarmandi et al. 2019; Wang and Sheen
2015). Atomistic ML models are typically trained to predict
fundamental physical and chemical properties, such as the
forces on atoms and chemical reaction rates. These proper-
ties are then used as inputs to other modeling techniques
(analytical or numerical), such as molecular dynamics (MD)
and microkinetic simulations, to obtain a final quantity of
interest (Qol). The accurate and efficient propagation of un-
certainty through the model chain to the Qol is essential to
make informed decisions and assess the reliability of
the final predictions. Therefore, UQ and UP should be
considered together when developing and applying atom-
istic ML models for chemical and materials applications.

Uncertainty analysis has been a crucial topic in chemical
engineering and materials science. Classical methods such as
polynomial chaos (Wiener 1938) have long been applied to
study the uncertainty associated with the key parameters
and outcomes in these domains (Phenix et al. 1998; Reagan
et al. 2005; Villegas et al. 2012). While uncertainty analysis
traditionally serves to acknowledge model imperfections
and has been primarily used for post-hoc analysis, with the
emergence of ML approaches, the landscape has become
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increasingly rich and diverse. For example, uncertainty has
become routinely used in active learning to select new
atomic structures to enrich the dataset and subsequently
retrain ML models. This has been demonstrated in both
structure—property models (Gubaev et al. 2018; Liu et al.
2022; Tian et al. 2021) and MLIPs (Schwalbe-Koda et al. 2021;
van der Oord et al. 2023; Zaverkin et al. 2024), among others.
Such proactive usage of uncertainty can greatly enhance
the robustness of ML models and, additionally, it is data
efficient.

This abundance of choices in ML-based uncertainty
analysis, however, has created a significant challenge in
decision-making for practitioners. Several critical questions
arise: What are the fundamental similarities and differences
between these UQ methods? What constitutes good UQ
methods, and how do their strengths and weaknesses
compare in the context of atomistic ML? Can the uncertainty
obtained from an ML estimator be propagated to down-
stream chemical and materials applications, and if so, how?
Without clear answers to these questions, navigating the
field of UQ and UP in atomistic ML can be a daunting task. It
often leads to confusion, such as misinterpretation of the
meaning and implications of the uncertainty, and difficulty
in selecting an appropriate method for a given task.

In this work, we provide a comprehensive review of
selected, representative UQ and UP methods for atomistic
ML, aiming to answer the above questions. We assume the
readers have a basic understanding of ML, but no prior
knowledge of UQ and UP is required. We anticipate that this
review will equip readers with a certain degree of certainty
in navigating the space of uncertainty. The paper is struc-
tured as follows. First, we present a primer on probabilistic
modeling in Section 2, setting the stage for the coming
sections. Next, in Section 3, we review and categorize the
selected UQ methods, leveraging the concepts introduced in
Section 2. In Section 4, we discuss ways to evaluate the
quality of the UQ methods from four different perspectives:
accuracy, precision, calibration, and efficiency. Additionally,
in Section 5, we explore UP techniques in widely used
chemical and materials simulation techniques, using MD
and microkinetic modeling as examples. While this work
focuses on uncertainty in ML models, data used in chemical
and materials science inherently contains uncertainties in
its values; we briefly discuss recent efforts to quantify and
propagate data uncertainty in Section 5.4. Finally, we
conclude by summarizing the current challenges of UQ and
UP for atomistic ML and outlining opportunities for future
research. A summary of the most commonly used symbols is
listed in Table 1, and a list of the abbreviations is provided in
Appendix A.
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Table 1: Notation: overview of the most commonly used symbols.

Symbol Explanation Alternative
0 Model parameters

X Model input

y Model output y=1f(x;0)
X Input set X = {X,.};V:1
Y Output set Y = {)’/}L
D Dataset D=7
p©6) Prior

p(YIX, 6) Likelihood p(D|6)
p(YIX) Marginal likelihood p(D)

p@x, n Posterior p(61D)

N (p,0%) Gaussian distribution

é Uncertainty

Eq[] Expectation w.r.t. 6

2 Primer on probabilistic modeling

In many atomistic ML. problems, the goal is to obtain a
regression model, y = fix; 6), which maps the input x (e.g., a
chemical reaction) to the corresponding output y (e.g., the
reaction rate), where 8 denotes all model parameters and
can be determined from an observed dataset D =
{4 Y)HY, = (X, Y) consisting of N data points. In addition,
we are interested in quantifying the uncertainty in the
predicted outputs y.

This section provides a brief review of the basic con-
cepts in probabilistic modeling, laying the foundation for the
discussion of uncertainty in subsequent sections. We first
introduce Bayesian inference to obtain the predictive distri-
bution which expresses the uncertainty about the prediction
y for each input x. Next, we discuss the frequentist maximum
likelihood estimation of model parameters 6 and its link to
the widely-used least-squares minimization. Finally, we
introduce evidence approximation, a framework integrating
frequentist estimates into the Bayesian approach to find
approximate solutions. Readers well-versed in probability
theory may choose to skip this section and refer back to it as
needed while reading the later sections.

2.1 Distribution functions

A probability density function (PDF), denoted as p(0), is used
to describe the probability distribution of a continuous
random variable ©. The PDF represents the relative likeli-
hood of the random variable taking on a specific value.
A cumulative distribution function (CDF), denoted as F(6),
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describes the probability that a random variable O takes a
value less than or equal to 6. The CDF can be obtained from
the PDFvia:F(0) = P(0<0) = J?wp (t)dt. A quantile function
(QF) maps probabilities to values of the random variable. It
is defined as the inverse of the CDF, Q(p) = F~ 1(p), thatis, for a
given probability p, the quantile function returns the value 6
such that its probability is less than or equal to an input
probability value, i.e., P(® < ) = p. As a concrete example,
Figure 1 presents the PDF, CDF, and QF of a one-dimensional
standard Gaussian distribution .7°(0,1) with a mean of
0 and standard deviation of 1.

2.2 Bayesian inference

In the Bayesian view, probability provides a quantification
of uncertainty (Gelman et al. 2013). Given an observed
dataset D, we are interested in obtaining the conditional
probability p(y*|x*, D) of the output y* for a new input x*.
From it, a statistical measure of the uncertainty in y* such as
the variance can then be obtained. Given a parametric
model, y = f{x; 6), this can be achieved in two steps.

First, obtaining the posterior distribution over model
parameters 6 using Bayes’ theorem (Gelman et al. 2013):

p(DIO)p(6)
p(6ID) = o) )

The prior distribution p(6) represents our prior infor-
mation as to which parameters 0 are likely to have generated
the outputs before observing any data, based on previous
knowledge, experience, or physical limitations. The effects of
the observed data D come from the likelihood function,
p(D|6), which quantifies the plausibility of D for different
realizations of 6. The denominator,

p(D) = [p(DIO)p(6) a6, @

is called the marginal likelihood, also known as the evidence
in the context of Bayesian statistics, which ensures that the
posterior is a proper probability and thus integrates into
one. It represents the likelihood of the observed data D,
considering all possible values of the parameter 6 weighted
by their prior distribution. Marginalization means evalu-
ating this equation to obtain the marginal likelihood.
Bayes’ theorem converts the prior probability over model
parameters into the posterior probability by incorporating
the evidence provided by the observed data.

Second, with the posterior over 6, we can obtain the
predictive distribution for a new data point (x*, y*) as

PO IX',D) = [p(y'Ix', O)p(6ID) d6, 3)
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Figure 1: One-dimensional Gaussian distribution with a mean of y = 0 and standard deviation o = 1. The probability density function (PDF), cumulative
probability function (CDF), and quantile function (QF). The QF is the inverse of the CDF, as can be seen by switching the horizontal and vertical axes.

where p(y*|x*, 0) is the likelihood given the new data point. It
isrelated to the likelihood function for a dataset p(D|0) in Eq.
(1), and further discussion on this will be provided in Section
2.3. From the predictive distribution, we can readily obtain,
e.g., the mean as the final prediction and the variance as a
point estimate of the uncertainty.

Although theoretically sound, a major practical limiting
factor of the full Bayesian approach lies in the complexity
of evaluating the posterior. In particular, the marginal
likelihood in Eq. (2) can only be analytically evaluated for
simple models like linear regression. Numerical techniques
such as sampling methods and variational inference have
to be undertaken to evaluate the predictive distribution
for more complicated models (Bishop 2006).

One can sample the posterior distribution using Monte
Carlo (MC) methods, such as Markov chain Monte Carlo
(MCMC), and then obtain the predictive mean and uncer-
tainty (Neal 1993, 2003). Sampling methods are accurate,
flexible, and can be applied to a wide range of models.
However, they are still computationally intensive because a
large number of samples might be needed for convergence;
thus, they are mainly used for small-scale problems (Bishop
2006).

Alternatively, the variational inference approach
tackles the challenge by employing another distribution
q(0) to approximate the true posterior p(6|D), and then
using q(0) to evaluate the predictive distribution in Eq. (3).
The approximate distribution ¢(0) is typically much
simpler, and it is optimized to resemble the true posterior,
e.g., by minimizing the Kullback-Leibler divergence
(Kullback and Leibler 1951; MacKay 1992b) between g(0)
and p(6|D). Although not exact, variational inference of-
fers a computationally efficient approach to evaluate the
predictive distribution. The MC dropout method to obtain
uncertainty in NN models proposed by Gal (2016) adopts
this approach, and it will be further discussed in Section
311

2.3 Maximum likelihood

Maximum likelihood estimation (MLE) is a frequentist
approach to estimate the optimal parameters 0 of a model
y = fix; 0). It is equivalent to the least-squares parameter
optimization technique widely used in science and engi-
neering. MLE provides a point estimate of the parameters
and thus predictive uncertainty cannot be directly quanti-
fied from a model trained using MLE alone. However, MLE
serves as a fundamental concept in parameter estimation
and forms the basis of many other UQ methods.

In MLE, we focus on the likelihood function p(D|6), and
do not care about the prior and posterior (see Eq. (1)). We
assume that the observed output y is given by the model
prediction fix; 6) with an additive error ¢,i.e., y = fix; 6) + €. A
Gaussian distribution with zero mean is a reasonable choice
for the error, p(€) = .4 (¢|0, %), where d” is the variance.
This is equivalent to the Gaussian distribution in which y is
regarded as the random variable with the model prediction
¥ = f(x; 0) as its mean and ¢” as the variance (Bishop 2006):

=12
O-Y) ) @

20?2

e i
POIXO) =4 ¥, o) Wexp(

In other words, this is the likelihood of 6 for a single data
point (x, y). Now consider the observed dataset D where each
data point is drawn independently from the distribution in
Eq. (4). We can obtain the likelihood function for the dataset
as the product of the likelihood for each data point:

N
p(DI6) = p(YIX,0) = [[p Oilxi, ). ©)

i=1
The optimal model parameters can thus be obtained by
maximizing Eq. (5) with respect to (w.r.t) 6, which is

equivalent to minimizing the negative log-likelihood (NLL):

S\2
NLL = -log p(DIf) = % ZN1<10g(2n02) + %) ©
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because the logarithm function is monotonically increasing.
This transformation converts a product of probabilities into
a sum of log probabilities, which is often more convenient to
optimize.

We note that in MLE, the variance ¢® is modeled as a
single constant, albeit unknown. Consequently, minimizing
the NLL is equivalent to the familiar least-squares minimi-
zation w.r.t. 6 using the loss:

LO) ==Y ;-3 )

DN =
M=

Il
5N

Recall that the model parameters 6 are implicitly indi-
cated in the model prediction y = f (x ; 8). With the optimal
point estimate of the parameters, 6, We can then get model
prediction as y* = fix*; 6, for any new input x*. Again, we
note that no information on uncertainty can be directly
obtained from this approach only.

2.4 Evidence approximation

While the full Bayesian approach can produce predictive
uncertainty, it can be computationally demanding to obtain.
On the other hand, it is straightforward to get a point esti-
mate of the optimal model parameters using MLE, but the
uncertainty cannot be quantified. The evidence approxima-
tion approach (Gull 1989; MacKay 1992a), also known as the
empirical Bayes (Bernardo and Smith 2009), generalized
maximum likelihood (Wahba 1985), or type 2 maximum
likelihood (Berger 1985), lies between the two extremes.

Evidence approximation is a method that looks at how
well a model fits the data overall. It focuses on the marginal
likelihood in Eq. (2), which provides the model evidence of
observing the data marginalized over the parameters,
meaning that it calculates the probability of seeing the
observed data under all possible parameter values of the
model. In evidence approximation, the prior p(f) in Eq. (2) is
further parameterized using a set of hyperparameters ¢,
becoming p(6|¢). Consequently, the marginal likelihood is
(Bishop 2006):

p(DIE) = [p(DI6,E)p (6I) d6. ®)

The introduction of the hyperparameters ¢ increases
the model’s capacity, meaning that the model has increased
flexibility to capture the underlying structure present in
the data. In practice, the prior distribution p(6|¢) is often
chosen to be conjugate to the likelihood p(D|6, &). In other
words, p(0|¢) is specifically selected to match the form of
the likelihood p(D|6, &) such that the integration in Eq. (8)
has a closed-form solution, thereby simplifying the process
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to obtain p(D|¢). For example, if the likelihood is the Binomial
distribution, a conjugate prior for it is the Beta distribution,
and then Eq. (8) can be analytically evaluated to obtain
the model evidence, which is a Beta distribution as well
(DeGroot and Schervish 2012).

In a full Bayesian setting, after obtaining p(D|{), one
would also marginalize over the hyperparameters ¢ to
obtain p(D) and then perform Bayesian inference. How-
ever, this marginalization typically does not have an
analytical solution. Instead, in evidence approximation,
we get a point estimate of ¢ by maximizing the model
evidence p(D|§) w.r.t. & Then, the model evidence, prior,
and likelihood are all evaluated using the optimal hyper-
parameters &, to perform Bayesian inference using
Egs. (1) and (3).

Alternatively, one can obtain the predictive uncertainty
directly from p(6|¢,p0), provided that the prior is chosen to be
of a specific form, e.g., as a high-order distribution on top of
the likelihood. This is the evidential regression approach
recently proposed by Amini et al. (2020). In Section 3.1.3, we
will further discuss this approach and explain how to get
the uncertainty.

3 Uncertainty quantification

A large number of UQ methods have been developed for ML
models. Here, we discuss several selected, representative
ones for atomistic ML for chemical and materials applica-
tions; in particular, we focus on UQ methods for NN models.
We classify them into three categories (Figure 2) mainly
based on the model construction strategy: probabilistic
approach, ensemble approach, and feature space distance
approach. A probabilistic approach models some distribu-
tion discussed in Section 2 and derives uncertainty from it.
An ensemble approach builds multiple models and obtains
the variance in the predictions as the uncertainty. A feature
space distance approach measures some “distance” of a data
point to the model training data and regards the distance as
the uncertainty. Although each method is placed under a
single category in Figure 2, some can belong to different
categories. For example, MC dropout can also be regarded as
an ensemble approach. We note that there are other ways to
categorize the UQ methods, such as the one based on model
utilization strategy (Gawlikowski et al. 2023).

In this section, we discuss the UQ methods, examining
how a model is trained and how uncertainty is obtained. In
addition, we provide example applications for chemical and
materials’ problems. A summary of the UQ methods is pro-
vided in Table 2.
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Uncertainty Quantification J

| I

Feature Space Distance

Probabilistic Approach J Ensemble Approach et
| |
| | |
Monte Carlo Mgan- Evidential Parameter - : Gaussian
Variance . e Bootstrapping || Subsampling LTAU .
Dropout Estimation Regression Initialization Mixture Model

Figure 2: Categorization of uncertainty quantification methods in atomistic machine learning. LTAU: loss trajectory analysis for uncertainty.

Table 2: Summary of the UQ methods. Category denotes the class to which a method belongs. For the probabilistic methods, we provide the specific type
of probabilistic approach the method belongs to. UQ measure denotes the quantity being used as the uncertainty. Efficiency means the number of
models that need to be optimized in the training stage and the number of model evaluations that need to be performed to obtain the uncertainty in the
inference stage. A method with a check mark indicates that it can be used to conduct sampling-based UP.

Category UQ measure Efficiency (training/inference) Sampling-based UP
Monte Carlo dropout® Bayesian Variance One/Multiple v
Mean-variance estimation” Maximum likelihood Variance One/One
Evidential regression* Evidence approximation Variance One/One
Parameter initialization® Ensemble Variance Multiple/Multiple v
Bootstrapping® Ensemble Variance Multiple/Multiple v
Subsampling® Ensemble Variance Multiple/Multiple v
LTAUf Feature space distance Error ratio One/One
Gaussian mixture model9 Feature space distance NLL Two/One

3Gal and Ghahramani (2016), ®Nix and Weigend (1994), “Amini et al. (2020), dLakshminarayanan et al. (2017), ®Hastie et al. (2009), Vita et al. (2024), 9Bishop
(2006). LTAU: loss trajectory analysis for uncertainty; NLL: negative log-likelihood.

3.1 Probabilistic approach
3.1.1 Monte Carlo dropout

The dropout technique was originally proposed by Srivas-
tava et al. (2014) as a regularization technique to alleviate
overfitting in deep NN models. It was adapted by Gal and
Ghahramani (2016) to approximate the Bayesian approach
for UQ mentioned in Section 2.2. Their method, known as MC
dropout, can be theoretically viewed as sampling from a
Bernoulli prior distribution over the weights of the NN, and
then taking advantage of the variational inference technique
to approximate the posterior distribution. Practically,
dropout is used at both training and inference time, allowing
the model to estimate uncertainty by considering multiple
predictions from different subsets of the network.

The model can be trained by minimizing a loss between
its predictions and the corresponding reference values to
obtain the optimal NN parameters. At each training step,

dropout randomly sets the outputs of a fraction of the nodes
in an NN to zero (e.g., the dashed nodes in Figure 3a),
effectively creating an ensemble of thinned sub-networks.
Once trained, we use the model in a similar way. Multiple
forward passes are performed through the NN, each
with different nodes being dropped, to obtain multiple
predictions. The predictions are then averaged to obtain
the final prediction and their variance is computed as the
predictive uncertainty. In this sense, MC dropout can also
be thought of as a frequentist ensemble approach to be
discussed in Section 3.2.

It is important to note that MC dropout is an approxi-
mation and may not capture the full posterior distribution
over the NN’s weights. Nevertheless, it has gained popularity
as a practical technique in atomistic ML. For example, Wen
and Tadmor (2020) have developed a dropout NN model for
carbon allotropes and shown that the obtained uncertainty
can reliably distinguish diamonds from graphene and
graphite.
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Figure 3: Schematic illustration of the probabilistic UQ approaches: (a) MC dropout; (b) MVE; and (c) evidential regression.

3.1.2 Mean-variance estimation

The mean-variance estimation (MVE) method, first intro-
duced by Nix and Weigend (1994), enables the use of a single
deterministic NN to obtain the predictive uncertainty.
This method largely follows the MLE framework (Section 2.3)
but with slight adjustments. In MLE, the observed data are
assumed to be independent and identically distributed
(i.i.d.) samples from a Gaussian distribution, where the mean
U is given by a parameterized model y = f (x ; 6) of the input
x, while the same constant variance ¢” is assumed for all
observed data (see Eq. (4)). In contrast, MVE uses different
variances for different data points to model the uncertainty.
In other words, the observed data are assumed to be drawn
from the Gaussian: .#" (u (x), 62 (x)), in which both the mean
¢ and the variance ¢” are parameterized models of the input
x.In practice, an NN with two output nodes can be employed
as the parameterized model, one node predicting the mean
u and the other for the variance ¢* (Figure 3b).

The training process involves using MLE to optimize
the NN’s parameters. In this case, since the variance is
not a constant, MLE is not equivalent to least-squares
minimization with the loss in Eq. (7) anymore. Instead, we
will need to directly minimize the NLL in Eq. (6). Once
trained, the predicted mean y by the NN gives the final
prediction, and the predicted variance o* serves as the
uncertainty.

MVE has been adopted by Tan et al. (2023) to predict the
energies of small molecules, among others. They found
that it has the highest average test error when compared to
other methods and suggested that this might be attributed
to the harder-to-optimize NLL loss function, which has been
reported in Seitzer et al. (2022).

3.1.3 Evidential regression

Amini et al. (2020) introduced deep evidential regression
as a method for UQ in NNs, building on the evidence

approximation approach discussed in Section 2.4. Here, we
summarize and explain the key formulation of this method
within the probabilistic framework, and the detailed deri-
vation provides essential insights into its theoretical foun-
dations. The practical formula for uncertainty estimation is
given in Eq. (15).

The model evidence for an entire dataset is given in Eq.
(8). To simplify the discussion, here we focus on the model
evidence for a single observation (x, y) (Amini et al. 2020),

pIE) = [p(y16, E)p (6IE) A6, )]

where we omit the conditional dependence on x for
simplicity. Similar to MLE, the data is assumed to be sampled
from a Gaussian likelihood:

p6.&) = 4" (1,0,

where 0 = (y, o), denoting the mean and variance of the
Gaussian. However, unlike in MLE, where the mean and
variance are fixed constants, here the mean and variance
are parameterized over ¢. Amini et al. (2020) proposed to
parameterize u and ¢* using the Gaussian and Inverse-
Gamma distributions, respectively:

(10)

u~A"(y,a*v?')  a*~T(a,p), (1n

where & = (), v, a, ) denotes the four hyperparameters.
Further, it is assumed that the prior p(6|¢) can be factorized
into the product of the distributions of 4 and ¢, then it can be
written as,

p(01§) = 4" (y,a>v") - T (a, B, (12)

which is called the Normal Inverse-Gamma (NIG) distribu-
tion, a high-order evidential distribution. Sampling from NIG
yields instances of lower-order likelihood functions from
which the data is drawn.

The NIG prior in Eq. (12) is the conjugate distribution to
the Gaussian likelihood in Eq. (10); therefore, the model
evidence in Eq. (9) can be evaluated analytically, resulting
in the Student-t distribution:
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13)
va

PIE) = St(y y, PAEY) Za).

Recall from Section 2.4 that the optimal hyper-
parameters ¢ = (y, v, a, ) are obtained by maximizing
the model evidence, namely Eq. (13). In the deep evidential
regression method by Amini et al. (2020), the hyper-
parameters are further parameterized by an NN and
obtained as the output of the NN with four output nodes, one
for each hyperparameter (Figure 3c). So, instead of ¢, the
parameters in the NN are optimized. In practice, we do not
maximize Eq. (13) but minimize the equivalent NLL of Eq.
(13) for numerical stability. In addition, extra regularization
terms can be added to remove misleading evidence. We refer
to Amini et al. (2020) for the technical details of model
training.

Once trained, the final prediction can be computed from

the NIG as (Amini et al. 2020)
Efu] =y, (14)

and the uncertainty as

B
via-1) 15

E[c*] + Var[u] = % +

Deep evidential regression has been used by Soleimany
et al. (2021) to predict molecular properties, and the obtained
uncertainty has been successfully used to achieve sample-
efficient training of property estimator and to guide the
virtual screening for antibiotic discovery. Gruich et al. (2023)
have also demonstrated its effectiveness in heterogeneous
catalysis applications.

3.2 Ensemble approach

The ensemble approach, characterized by its simplicity and
diverse construction methods, combines multiple models to
create a more robust predictive model, surpassing individ-
ual model limitations (Zhou 2012). The frequentist ensemble
approach is easy to implement and can be applied to a large
number of regression algorithms. It might be computation-
ally expensive when compared to other UQ methods, but
they can be naively paralleled. A couple of methods exist to
construct an ensemble, such as parameter initialization,
bootstrapping, and subsampling (Figure 4).

The first type of method involves fitting models with
different parameter initializations to the same dataset.
Lakshminarayanan et al. (2017) proposed the use of ensem-
bles for estimating the uncertainty of NNs. NNs of the same
structure are created, but their parameters are initialized to
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be different. Each member of the ensemble is trained on the
entire training set, meaning that all members have access to
the same data.

The second type of method focuses on fitting the same
model to different datasets. Bootstrapping is a widely used
method to generate multiple derived datasets from a given
dataset. Each subset, called a bootstrap sample, is created by
randomly sampling the same number of data points from the
original dataset with replacement (Hastie et al. 2009). This
means that each data point has an equal probability of being
selected, and the same data point can be included multiple
times in the bootstrap sample. This process is repeated M
times, resulting in M bootstrap samples. Then, M models are
trained separately, each using one of the bootstrap samples.

Subsampling (Politis and Romano 1994; Politis et al.
1999) is an alternative to bootstrapping to create multiple
derived datasets from a given dataset. It is similar to
bootstrapping but with a key difference: subsampling is
performed without replacement and thus each data point
can only appear at most once in each subset. As a result,
each sample consists of fewer data points than the original
dataset.

The final ensemble prediction and uncertainty are
obtained by combining the outputs y,,y,,....y,, of all
members. The mean,

_ 1M
=1 Zly (16)
gives the final prediction, and the variance,
1 M
2 _ - 5.9y 2

gives the predictive uncertainty.

3.3 Feature space distance approach

Another category of UQ approach is based on some distance
measure in the model’s feature/latent space. It assumes that
data points resembling each other are positioned closer to
one another in the feature space. Therefore, for a given test
data point, if it is close to the training data in the feature
space, the predictive uncertainty is low; otherwise, the pre-
dictive uncertainty is high.

In this approach, the uncertainty is typically obtained in
atwo-step process. First, given a primary model like an NN, a
point estimate of the optimal model parameters is obtained
using a training technique such as MLE. Second, construct
another model to measure the distance between a test data
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a Parameter Initialization

b Bootstrapping
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Figure 4: Schematic illustration of the ensemble UQ approaches: (a) parameter initialization, (b) bootstrapping, and (c) subsampling.

point and the training data in the primary model’s feature
space. When dealing with NNs, the feature space can be
chosen as the last but one layer or other internal layers that
are considered suitable.

3.3.1 LTAU

Loss trajectory analysis for uncertainty (LTAU) measures the
distance in the Euclidean space. It begins by training an NN
model to predict an atomic property y, chosen to be the
forces on atoms in Vita et al. (2024). During training, besides
optimizing the model parameters, the error ¢; = |ly; — y;|
between the model prediction y; and its corresponding
reference y; for each atom i is recorded as

Ti={eLéh ... e},

3

(18)

where the super index denotes the training epoch at which
the error is logged, and E is the total number of epochs to
train the model.

After training, we get a set of errors T; along the loss
trajectory for each data point i and then convert the errors to
the model’s confidence score for that data point via

p; = P(€f € T; < atol), 19)

which means the ratio of data points in T; whose value is
smaller than or equal to a tolerance atol. A reasonable choice
for atol would be the mean absolute error (MAE) between
the predictions from the trained primary model and
their references. The value of p; is in the range of [0, 1]. The
uncertainty of each data point is calculated as

§=1-p, (20)

which can be interpreted as the probability that the
model’s prediction on data point i will have an error larger
than the MAE.

The uncertainty for a new data point, j, is obtained by
averaging the uncertainties of its nearest K neighbors in
the training data (Figure 5a):

LTAU b GMM

Low

Uncertainty  High

Figure 5: Schematic illustration of the UQ approaches based on feature
space distance. (a) LTAU assigns the average uncertainty of neighboring
training data (circles) to a test point (square). (b) GMM models the density
of the training data in the feature space, and a test point has low
uncertainty if it is located in a dense region.

21

where N; denotes the set of neighbors. The nearest neighbors
can be determined by performing a similarity search based
on Euclidean distance in the feature space.

LTAU has been successfully applied to tune the
training-validation gap in NN potentials for carbon
materials and predict the errors in relaxation trajectories
of catalysts (Vita et al. 2024).

3.3.2 Gaussian mixture model

An alternative to Euclidean distance is measuring the den-
sity. If a test point is in the dense region where the training
data are located in the feature space, then this test point has
low uncertainty (Figure 5b). The density can be estimated by
a Gaussian mixture model (GMM).

After training the primary model such as an NN, we get a
set of feature vectors H = {hy, h,, ..., hy}, each representing a
training data point in the feature space. The set of feature
vectors is then used to train the second GMM model. We aim
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to capture the underlying structure of the feature vectors
using a GMM (Bishop 2006):
M 3
P(hi|W, WwZX) = Z WA (hilﬂmx Zm), (22)
m=1
which is linear combination of M Gaussian functions of
respective mean u,, and covariance X,,, with weights wy,.
Each Gaussian./"is a multidimensional distribution in the
feature space, and thus y,, is a vector and X,, is a matrix.
We assume a dataset consists of i.i.d. samples from this

GMM likelihood. Then, the NLL for the dataset can be
written as

N M
NLL(H|w,(,5) = - Y. log< > wmﬂ/‘(hilum,zm), 23
i=1 m=1

which can be derived in the same way as from Eq. (4) to
Eq. (6) for MLE. To train the GMM, we minimize the NLL
w.r.t. 4, £, and w, meaning that we adjust the location and
shape of the Gaussian distributions, as well as the weight
of each member such that the GMM model best describes
the density of the training data in the features space.
The optimization can be performed via a gradient-based
technique, or, more typically, using the expectation-
maximization algorithm (Hastie et al. 2009).

Once the GMM model is trained, the uncertainty for a
new data point x* can be obtained in two steps. First, obtain
its feature vector h* using the primary model. Second,
compute its NLL,

NLL (R |w, 4, 5) = —log< > wmﬂ*”(h*lum,zm)) (24)
m=1

and the NLL can be regarded as the predictive uncertainty
(Zhu et al. 2023).

The GMM method has been employed by Zhu et al. (2023)
to build NN interatomic potentials, leveraging the uncer-
tainty estimates for active learning and efficient training
data selection.

Overall, feature space distance approaches, such as
LTAU and GMM, measure how far a data point is from the
distribution of the training data, essentially indicating
whether the point is out of distribution. The predicted
uncertainty, however, does not necessarily scale with
the prediction error; therefore, recalibration of the
uncertainty is typically needed if one intends to use
the uncertainty as a proxy of the prediction error.
Demonstration of the quality of the approach is provided
in Section 4.3, and further discussion of the recalibration
is given in Section 4.4.
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4 Performance evaluation

What makes a UQ method effective? Uncertainty is solely a
property of model predictions, providing information
about their precision — the degree to which the predicted
values are concentrated around each other (Figure 6).
However, uncertainty does not directly measure the accu-
racy of the predictions, i.e., how close they are to the true
observations. Despite this, a key application of uncertainty
is to use it as an indicator of the likely accuracy of the
predictions. Ideally, a prediction with high uncertainty
should indicate a large error and thus be less reliable. The
degree to which the uncertainty aligns with the accuracy
is called calibration.

An effective UQ method should be accurate, precise,
and well-calibrated; in addition, it should be computa-
tionally efficient for practical usage. These four aspects
evaluate UQ methods from different perspectives. In
this section, we discuss performance evaluation for UQ
methods, focusing on uncertainty calibration, a concept
that, we believe, may be less familiar to researchers
working on atomistic ML. We also examine scoring metrics
for UQ evaluation, comment on the pros and cons of
existing UQ methods, and provide concrete examples
by drawing insights from existing benchmark studies.
Furthermore, we introduce recalibration techniques to
improve UQ performance.

>
>

Precision

Accuracy

Figure 6: Uncertainty and prediction error. Loosely speaking,
uncertainty gives the precision of the predictions, meaning how tightly
the predictions are distributed against each other, while prediction error
measures the accuracy of the predictions, meaning the distance between
the prediction and the true value.
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4.1 Calibration

Calibration measures the statistical consistency between the
predictions and observations, a property that depends on
both the predictions and observations (Gneiting et al. 2007).
Uncertainty calibration has been extensively studied in the
context of classification problems. Perfect calibration in this
setting means that the confidence assigned to a class equals
the probability of the prediction belonging to that class
(Guo et al. 2017; Scalia et al. 2020). For instance, if we have
10 predictions, each with a confidence of 0.8, we expect 8 of
them to be correctly classified.

Uncertainty calibration for regression is less intuitive
because the model predicts continuous values, rather than
discrete labels as in classification. Nevertheless, following
the groundbreaking work by Gneiting et al. (2007),
methods that extend the uncertainty calibration approach
for classification have been proposed for regression
problems (Kuleshov et al. 2018; Levi et al. 2022) and adopted
in atomistic ML. Here, we discuss two such methods: in-
terval based and error based regression uncertainty
calibration. As a technical note, we will use § to denote
uncertainty in general. However, for some models,
uncertainty is represented by the variance o” (see Table 2).
Therefore, these two notations will be used interchange-
ably when appropriate.

4.1.1 Interval based approach

Loosely speaking, in a regression setting, calibration
means that a model prediction should fall in a given
confidence interval y% approximately y% of the time
(Kuleshov et al. 2018). For example, the model in the top
panel of Figure 7 is not calibrated because only 20 %
(2 out of 10) of the time the predictions are within the
90 % confidence interval, while the one in the bottom is
calibrated. Formally, according to Kuleshov et al. (2018),
for a given calibration dataset Dy = {(X;, yi)}f-\i 1> a regres-
sion model is calibrated if

i H[)’i <F/ (P)]

N (25)

—p forall p e [0,1],
as N — o, Here, F; = P(Y < y;) denotes the CDF of the random
variable Y, and F;" is the corresponding quantile function
(see Section 2.1). I[c] is the indicator function, which evalu-
ates to 1 if the condition c is true and 0 otherwise. In other
words, Eq. (25) means that, for a calibrated model, the
empirically observed CDF from the data and the expected
CDF by the model should match as the dataset size goes to
infinity.
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Figure 7: Illustration of a non-calibrated regression model (top) and a
calibrated one (bottom). The plot is inspired by Kuleshov et al. (2018) but
generated using arbitrary data.

In practice, Eq. (25) is evaluated for a selected number of

p values, and the calibration curve is used to check the

calibration level, which plots the observed CDF from the data

versus the expected CDF by the model (Figure 8a). With this,
the calibration curve can be obtained as follows (Kuleshov

et al. 2018):

(1) Discretize the expected CDF to a set of M values
0<p1<Pp... <pp<1 The datais assumed to be generated
from a Gaussian, y~.#"(y,0%), where y and ¢* are the
predictions and the associated uncertainty, respectively
(Kuleshov et al. 2018; Tran et al. 2020). For example, if an
ensemble method is used, theny and ¢ are the ensemble
mean and variance, respectively. For a Gaussian with
mean y and variance ¢ the expected CDF can be readily
obtained (see Section 2.1). We note that assuming a
Gaussian distribution may not accurately reflect the true
nature of the data in all cases.

(2) For each expected CDF p;, compute the corresponding
expected model output y; As mentioned above, the
model output is assumed to follow a Gaussian; therefore,
y; can be readily computed using the quantile function,
¥ = Q(p) = F\(p), discussed in Section 2.1.

(3) For each expected CDF p; compute the corresponding
observed CDF p;. With y; obtained in the previous step, p;
is obtained as the empirical frequency p; = |{y;ly; <y;, i =
1,2,...N}|/N (left of Eq. (25)), where || denotes the size of
a set, and N is the total number of data points in the
calibration dataset D). In other words, p; is computed as



344 — . Dai et al.: Uncertainty in atomistic machine learning

aio-
//
Under- 4
L 081 confident /¢
fa) (&
2 0.6- v
/7
(0]
S Over-
9 0.4+ /: confident
e} ,/
o ’
0.2+ /' Perfect
7/
’
0.0 1

T T T T
0.0 0.2 04 06 08 1.0
Expected CDF

b N
0.5 Over-
> confident
% 0.4+
o]
T 0.3
> Under-
= i confident
5 0.2
© Perfect
o)
© 0.1
[a
0.0 4

Figure 8: Calibration curves and probability density for the interval
approach. (a) Calibration curves for perfectly calibrated (diagonal grey),
over-confident (green) and under-confident (purple) models. (b) The
Gaussian probability densities correspond to the calibration curves in (a).

the fraction of data points whose prediction y; is smaller
than or equal to y;.

(4) Create the calibration curve by plotting (p;, p;) pairs for
j=12, ..M.

The calibration curve provides rich information. First,
for a perfectly calibrated model as defined in Eq. (25), the
calibration curve should be a diagonal line, meaning that
the observed CDF from the data and the expected CDF by
the model match with each other. Therefore, a model’s
calibration could be qualified by the closeness of its cali-
bration curve to the diagonal line. In addition, the shape of
the calibration curve could yield other insights into the
predictive uncertainty of a model. A calibration curve that is
above the diagonal line at low expected CDF but below at
high expected CDF suggests that the model is over-confident.
To understand this, let’s focus on the low expected CDF
region, e.g., at 0.2 in Figure 8a. Here, the expected CDF is
smaller than the observed CDF, meaning that the variance in
the Gaussian distribution used to construct the model is
smaller than the variance in the observed data (Figure 8b).
With a smaller expected variance (uncertainty), the model is
over-confident. On the other hand, an under-confident
model has a calibration curve that is below the diagonal
line at a small expected CDF but above a large expected CDF.
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In Kuleshov et al. (2018) and Levi et al. (2022), the
observed CDFs are interpreted as observed confidence in-
tervals. Because of the use of CDF, the interval here means
(=00, q]-]. This is different from the commonly used notion of
confidence interval, which is typically specified as an interval
around the mean. For example, the 68 % confidence interval
of a Gaussian distribution is u + a. Thus, to avoid confusion,
we do not use “confidence interval” but directly use CDF as is
also done in Tran et al. (2020). Nevertheless, it is possible to
interpret the calibration curve as the commonly used confi-
dence interval. Instead of CDF, one can employ the probability
density function (PDF), considering symmetric intervals u + y;
of varying confidence level 0 < y; < y,... < ypr <1 around the
mean and examining the empirical frequency of the observed
data belonging to each interval (Scalia et al. 2020).

4.1.2 Error based approach

The error based approach directly compares the predicted
uncertainty o” and the expected square error between the
model prediction y and the observed data y, stating that, for a
calibrated model, the predicted uncertainty and the ex-
pected error should match (Levi et al. 2022). Formally, a
regression model is calibrated if

Exy[ @ -YP10* =ul » u (26)

for any chosen positive u, where the expectation E is taken

over the joint distribution of x and y. From the definition, no

average over points with different values of u is needed,;
thus, in principle, for each data point, one can correctly
predict the expected error. In practice, however, binning is

performed to empirically evaluate Eq. (26).

Similar to the calibration curve in the interval based
approach, here, a reliability diagram can be created to di-
agnose the calibration level of a model, as follows (Levi et al.
2022):

(1) Sort the data points according to their predicted uncer-
tainty ¢%, and then divide them into M bins, By, By, ... By
For simplicity, the bin boundaries can be equally located
from the minimum to the maximum of the uncertainty
(Figure 9a).

(2) For each bin B;, calculate the root-mean variance (RMV),
RMV (j) = ,/lb%‘ziegjal?, and the root-mean-square error
(RMSE), RMSE (j) = Jlbéjlziegj (9; - y;)* where |Bj| is the
number of data points in bin j.

(3) Plot the RMSE()) against the RMV(j) for each bin j. This
plot is the reliability diagram (Figure 9b).

According to Eq. (26), if a model is perfectly calibrated, the
RMV and RMSE should be equal for each bin; therefore, the
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Figure 9: Reliability diagram for error based calibration approach.

(a) Binning an example dataset of 400 data points into 10 equally
separated intervals. (b) Calibration curve, where each blue dot represents
the RMSE and RMV for each bin. A perfectly calibrated model should
follow the diagonal line.

calibration curve should be a straight diagonal line in
Figure 9b. A larger deviation from the diagonal line suggests
a more poorly calibrated model. It is important to note that,
unlike the interval based approach, here, the reliability
diagram is not constrained to be within [0, 1], but instead
ranges between 0 and the maximum RMV or the maximum
RMSE value. Consequently, directly comparing the reliability
diagrams of different models is not appropriate unless some
form of normalization is performed. Furthermore, the
choice of the number of bins can have a significant impact on
the results. For instance, in Figure 9a, we chose 10 bins, and
the last bin By consists of only three data points, which is
insufficient to obtain reliable statistics for RMV and RMSE.
One could consider using a smaller number of bins;
however, if the number of bins is too small, the details might
be averaged out.

4.2 Metrics

Calibration plots offer a qualitative way to assess UQ
methods. For quantitative comparison, scoring metrics that
can assign numerical scores to each UQ method become
necessary. Various metrics have been proposed, and we
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focus on the important ones that evaluate a UQ method from
four different perspectives: calibration, precision, accuracy,
and efficiency.

4.2.1 Calibration error

Miscalibration area. For the interval based calibration
approach, the closeness of a model’s calibration curve to
the perfect calibration curve (i.e., the diagonal line) can be
quantified by calculating the area between them (e.g., the
green area in Figure 8a), called the miscalibration area (Tran
et al. 2020). A smaller miscalibration area indicates better
calibration and a miscalibration area of 0 suggests an ideal
calibration.

Expected normalized calibration error (ENCE). For
the error based calibration approach, it does not make sense
to calculate the area between a model’s calibration curve
and the perfect calibration curve and then compare across
models, because the RMV and RMSE values are not bounded
to be within [0, 1] and different UQ methods can have varying
ranges for RMV and RMSE. To alleviate this, the ENCE can be
used (Levi et al. 2022),

1 2 [RMV (j) - RMSEj)|

ENCE = — . s
MA  RMV()

@27

where M is the total number of bins used to generate the
calibration curve. Similar to the miscalibration area, a
smaller ENCE indicates better calibration.

Miscalibration error and ENCE summarize the reli-
ahility by aggregating/averaging the errors between the
predicted and perfect calibration curves, producing an
overall assessment of a model’s calibration. One can also
consider the maximum calibration difference between the
curves to obtain the worst-case error. This becomes impor-
tant in high-risk applications, e.g., in drug discovery and
materials design for safety-critical systems.

4.2.2 Precision

Calibration is necessary but not sufficient for useful UQ
analysis (Gneiting et al. 2007). Recall that calibration only
measures the statistical consistency between the predicted
uncertainty and the observed data, but does not provide
information about the distribution of the predictions
themselves. This aspect is related to the precision of the
predictions, and metrics such as sharpness and dispersion
have been proposed to quantify it (Kuleshov et al. 2018; Levi
et al. 2022). However, according to Gneiting et al. (2007), these
metrics should be considered secondary after calibration.
A major reason for this is that they are properties of the
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predicted uncertainty alone and do not capture the re-
lationships between uncertainty and accuracy.

Sharpness. A well-calibrated model with more precise
predictions (small uncertainty estimates) would be more
informative and useful than a less precise model (large
uncertainty estimates) (Gneiting et al. 2007). This idea can be
quantified by the sharpness, defined as (Kuleshov et al. 2018;

Tran et al. 2020):
1 N
SHA = \|= > Var (F)),
N o

where Var(F;) is the variance of the random variable whose
CDF is F for data point i. In practice, this can be evaluated

(28)

as SHA = 1YY 0?, where o? is the predicted variance
(uncertainty) for data point i. The more precise the
predictions, the sharper the model (smaller SHA value), and
the sharper the better.

Dispersion. Another dimension involves the dispersion
of the uncertainty. One can obtain perfectly calibrated
uncertainty if a model always outputs the same constant
uncertainty which matches the empirical frequency across
the entire distribution (Scalia et al. 2020; Tran et al. 2020).
Such an uncertainty estimate is not informative or useful
because it remains unchanged regardless of the input
data provided to the model. Levi et al. (2022) propose the
coefficient of variation to measure the dispersion of the
uncertainty estimates,

1 [1 X )
C\)z_ T 1 Gi_ g/ >
i N—1§1( Us)

where og; is the predicted standard deviation, u, is the mean
of the standard deviations and N is the total number of data
points. A C, value of 0 means the same constant uncertainty
for all data points, not a useful uncertainty estimate. Higher
C, is preferred so that the uncertainty for different data
points can be distinguished.

(29)

4.2.3 Accuracy

The introduction of a UQ method to a model can affect the
model’s prediction accuracy. For example, it has been
observed that graph NNs for chemical property prediction
trained with ensemble and MC dropout methods yield
higher accuracy when compared with the same model
trained using maximum likelihood (Scalia et al. 2020). But
this may not always be the case. So, it is crucial to examine
prediction accuracy as well. The two most widely used
accuracy metrics are mean absolute error (MAE):
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1y

MAE = = > Vi - yil, (0)

N g

and root-mean-square error (RMSE):
1y 2

RMSE = 4/= Y (Vi -y 3D

Nia

where y; is model prediction, y; is the corresponding
reference value, and N is the number of data points. MAE
measures the average absolute difference between the
predicted and reference values, treating all errors equally.
On the other hand, by squaring the errors before averaging,
RMSE gives higher weight to larger errors, making it more
sensitive to outliers. Lower values of MAE and RMSE indi-
cate better agreement between predictions and reference
data.

4.2.4 Efficiency

Computational tractability and efficiency are essential for a
UQ method to be practically usable. Even if a method is
highly calibrated, precise, and accurate, it may not be suit-
able for real-world applications if it is computationally too
demanding in terms of both time and memory. Unfortu-
nately, efficiency is often ignored in existing studies of UQ
methods for atomistic ML.

Training and inference time. A straightforward way
to compare time efficiency is by tracking the total runtime
of a model to obtain the prediction and uncertainty, which
is usually the main concern for practical atomistic ML ap-
plications. However, a UQ method’s total runtime is highly
dependent on the underlying model’s speed. To focus on the
UQ method itself, we analyze training and inference effi-
ciency separately: the number of models required to be
trained and the number of model executions needed to
obtain the wuncertainty at inference. The ensemble
approach is not efficient because multiple models need to
be trained, and multiple model executions must be carried
out to get the uncertainty at inference. Approaches such as
MVE and evidential regression are on the opposite end of
the spectrum: a single model at training and a single
execution at inference. Methods like MC dropout lie in
between these two extremes. The training/inference effi-
ciency for all UQ methods discussed in Section 3 is listed in
Table 2.

Memory. In addition to time efficiency, memory effi-
ciency should be another consideration when evaluating the
UQ methods. This is, again, largely dependent on the un-
derlying model to which a UQ method is applied.
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4.2.5 Other metrics

Besides the above-mentioned ones, other metrics have also
been used to evaluate UQ performance, particularly, in
assessing a model’s calibration. These include ranking
correlation and NLL, among others, which can be used
together with the calibration metrics discussed in Section
4.2.1.

Ranking correlation. For a UQ method, we expect that a
high uncertainty suggests a large prediction error. So, there
should be a monotonic relationship between the uncertainty
6 and the prediction error € for a well-calibrated model
(Tan et al. 2023; Varivoda et al. 2023). This can be quantified
with Spearman’s rank correlation coefficient. For a set of
uncertainties and errors {(6;, ei)}ﬁl, we first obtain ranked
sequences of the uncertainties Rs and the errors R, sepa-
rately, and then compute the Spearman’s rank correlation
coefficient as

= Cov(R(;,Re), 32)

ORsOR,

where Cov denotes the covariance between two variables
and o denote the standard deviation of a variable. The values
of rg are within the range of [-1, 1], with -1 or 1 suggesting a
perfect monotonic relationship between the uncertainty and
the error, and 0 being the worst case, indicating that there is
no correlation.

NLL. NLL is a standard measure of a model’s fit to the
data which combines both the accuracy and the uncertainty
in one measure. With a set of predictions and the associated
uncertainties (i.e., variance ¢?), Eq. (6) can be directly used
to obtain the NLL. Despite its popularity, NLL has been
criticized for the lack of robustness (Gneiting et al. 2007). It is
hypersensitive to small changes and is unbounded, with
acceptable values ranging from —o to +o (Gneiting and
Raftery 2007, Selten 1998).

4.3 Benchmark studies

Using metrics as those discussed in Section 4.2, several
benchmark studies have attempted to evaluate the perfor-
mance of various UQ methods on diverse atomistic ML
datasets (Hirschfeld et al. 2020; Hu et al. 2022; Scalia et al.
2020; Tan et al. 2023; Tran et al. 2020; Varivoda et al. 2023).
A major goal is to identify UQ methods that can perform
well across metrics and datasets, thus providing practical
guidance for selecting appropriate ones for chemical and
materials applications. Several general observations can
be made from these benchmark studies.
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First, the UQ methods perform differently on different
metrics; a method that works well on one metric can fall short
on another. For example, Tran et al. (2020) have trained
various ML models to predict the adsorption energies of small
molecules on metal surfaces calculated from DFT. Although
all trained ML models reported in Tran et al. (2020) have
similar accuracy (MAE of ~0.20 eV) and miscalibration area
(~0.13, Figure 10), their performance on precision varies a lot.
For example, MC dropout is much sharper than NN ensemble
(SHA: 0.09 versus 0.14), but has a lower dispersion (C,: 0.82
versus 1.06) (see Section 3, Tran et al. (2020), for more details).
Even for UQ methods that have, for example, a similar mis-
calibration area as illustrated in Figure 10, the shape of the
calibration curves can be drastically different, indicating
different modes of miscalibration. Tan et al. (2023) observed
similar behavior using the rMD17 dataset (Christensen and
Von Lilienfeld 2020) of energies of small molecules.

Second, performance varies by dataset; for a given
metric, different UQ methods can have varying error levels
across datasets. For example, Tan et al. (2023) observed that,
for the rMD17 dataset of energies of small molecules, NN
ensemble exhibits smaller miscalibration error than the
evidential regression method (Figure 11b). Varivoda et al.
(2023) have found similar behaviors for the dataset of
formation energies of crystals (Jain et al. 2013) and the
dataset of surface adsorption energies of metal alloys
(Mamun et al. 2019). However, they found that, for the
dataset of band gaps of MOFs (Rosen et al. 2021), the
miscalibration errors are the same for the ensemble and
evidential regression methods.

Third, ensemble methods appear to be a reliable UQ
approach in general. For example, Tan et al. (2023) compared
the ensemble method versus the MVE, evidential regression,
and GMM deterministic methods for both in-domain (rMD17
and ammonia) and out-of-domain (silica glass) tasks. Using
metrics such as MAE, Spearman correlation, and miscalibra-
tion area (Figure 11), they have found that single-deterministic
methods struggle to consistently perform better across each
in-domain and out-of-domain task and that the ensemble
method still remains the most reliable choice. For ensemble
methods, different ways to generate the ensemble can result
in different performances. For example, Scalia et al. (2020)
have compared three ensemble methods — NN ensemble with
different parameter initialization, bootstrapping, and MC
dropout — using the miscalibration area, ENCE, sharpness,
and dispersion metrics (Recall from 3.1.1 that MC dropout can
beregarded as an ensemble method in practice). Evaluated on
various MoleculeNet benchmarking datasets (Wu et al. 2018),
their finds indicate that NN ensemble with different param-
eter initialization and bootstrapping consistently outperform
MC dropout (Figure 12).
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Figure 10: Comparison of calibration curves displaying miscalibration area of various UQ methods. NN ensemble, here, refers to NNs trained with
random parameter initializations. GP: Gaussian process, a probabilistic modeling approach that inherently models predictive uncertainty (Rasmussen
2003). Images adapted from Tran et al. (2020) under a CC BY 4.0 DEED license.
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Figure 11: Comparison of various UQ methods on the rMD17 dataset. (a) Predicted uncertainties as a function of squared errors of atomic forces and
(b) computational cost, MAE of atomic forces, Spearman correlation, and miscalibration area of various UQ methods. Ensemble, here, refers to NNs
trained with random parameter initialization. Images adapted from Tan et al. (2023) under a CC BY 4.0 license.

Despite the robustness of the ensemble approach, there that the uncertainty of a single prediction obtained from an
are contradictory studies showing that ensemble methods ensemble approach cannot be directly correlated with the
may not always be the most reliable choice. For example, absolute error per atom. This is because the absolute error is
Hirschfeld et al. (2020) have demonstrated that the stacking distributed along a normal distribution, with its width
methods that sequentially combine multiple weak modelsto  determined by the uncertainty arising from model variance.
produce the uncertainty estimate can be more consistent To address this, they developed an approach that uses locally
than the ensemble approach. Heid et al. (2024) have shown aggregated uncertainties to identify high-error local
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substructures, enabling the resolution of absolute errors on
an atomic scale.

Fourth, off-the-shelf metrics may not be directly appli-
cable. The metrics, particularly those related to calibration
discussed in Section 4.2, have been primarily developed
within the ML community using non-chemical datasets.
Their suitability for chemical and materials problems is
not guaranteed. For instance, the error based calibration
approach conventionally performs binning directly on the
predicted uncertainty, represented by the variance ¢ in
Figure 9a. Chemical and materials data can have numerous
small variance values. Therefore, it might be more appro-
priate to conduct binning after transforming the variances
using a logarithmic function to avoid cluttering the bins at
small variance values, as demonstrated in Figure 11a.

Benchmark studies so far have been valuable in
highlighting how different UQ methods can have varied
performances depending on the choice of metrics and
dataset. However, these studies consistently indicate that the
question of which UQ method to select in practice remains
unresolved. This appears to be discouraging. Nevertheless,
there are guiding principles based on ease of use, efficiency,
and uncertainty propagation. Ensemble methods provide
a strong baseline and are straightforward to implement,
making them a go-to choice for many applications. How-
ever, single-pass models (e.g., MVE, evidential, and GMM)
are generally more efficient than ensemble methods
(Figure 11b), so they can be good choices for resource-
bounded applications. Another consideration is UP; the
chosen propagation method may make certain UQ methods
more suitable. This will be further discussed in Section 5.

4.4 Recalibration

So far, we have discussed ways for evaluating UQ methods
in terms of their calibration, precision, accuracy, and
efficiency, and we have provided some examples. But if a
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model’s performance is unsatisfactory, are there any ap-
proaches to improve it? The answer is yes, and, here, we will
concentrate on calibration.

Informally, the calibration problem can be described as
follows: given a trained model U that can generate predictive
uncertainty § = U(x), we train another recalibration model R

such that the output of the composed functions 5= R(U (x))
is calibrated. The model R should be trained on a separate
recalibration dataset D, distinct from the datasets used for
model parameter optimization or hyperparameter tuning.
Below, we discuss two recalibration methods, both of which
are applicable to the interval based calibration approach
introduced in Section 4.1.1.

Variance scaling. For the interval based calibration,
the model prediction, y, is set to take the form of a
Gaussian y~.# (i, 0%). The model can be under-confident
or over-confident depending on the scale of the variance o”.
To recalibrate it, that is, making the calibration curve
move toward the diagonal line in Figure 8a, we can train a
linear model R(0%):6% =ac?+b to scale the variance.
The parameters a and b can be determined by, e.g., mini-
mizing a calibration NLL loss (Tan et al. 2023),

Y, (log[27 (ac? + b)] + (y; - §,)*/ (ac® + b)), using a recali-
bration dataset D, consisting of N data points. Once the

optimal a and b are obtained, the new variance g for the
Gaussian is known for every data point, which can then
be used to regenerate the calibration plots.

Isotonic regression. The variance scaling approach
still assumes that the model prediction follows a Gaussian
distribution. The true observed data distribution, however,
may not be Gaussian. Kuleshov et al. (2018) proposed a
recalibration approach based on isotonic regression, which
is effective even for non-Gaussian cases. Given a recalibra-
tion dataset Dy, this approach begins by transforming it
into a processed recalibration dataset Dca = {(q;, ) ;‘Zl,
where g; and ¢; are obtained using the same procedures

described in Section 4.1.1. Using Dea1, an isotonic regression
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model g; = R(q;) is then trained. Isotonic regression is a
technique for fitting a free-form line to map a sequence of
inputs (q;in this case) to a sequence of observations (q; in this
case) such that the fitted line is non-decreasing everywhere
and lies as close to the observations as possible (Fielding
et al. 1974). Isotonic regression is chosen because it accounts
for the fact that the true calibration curve is monotonically
increasing. Once the isotonic regression model is trained,
new uncertainty § can be generated, and new calibration
plot can be produced.

5 Uncertainty propagation

For most chemical and materials problems, quantifying a
model’s predictive uncertainty is not sufficient; often, we are
also interested in understanding how the uncertainty
propagates to a physical Qol that can be obtained from
physics-based modeling using the model. For example, if
the uncertainties in energy and forces are known for an
interatomic potential, and MD simulations are employed
to compute a material property like thermal conductivity,
we would naturally hope to know the uncertainty in the
calculated thermal conductivity. Similarly, if microkinetic
modeling is used to investigate chemical reaction dynamics,
we need to determine how the uncertainty in reaction rates
propagates to and affects the concentrations of the chemical
species.

We define the uncertainty propagation (UP) problem
as follows: Given a model y = f{x; 0) that can provide pre-
dictive uncertainty, we aim to determine the uncertainty
in a Qol z that is a function of the model output,
ie,z=gy)=(g°NHx; 0) = h(x; 0), where h = g-fis defined as
the composition of g and f. In other words, we investigate
how the uncertainty in the model parameters 8 and the
training data propagate to the Qol z. Typically, g is not
an ML model but rather a physics-based simulation tech-
nique, such as MD or microkinetic modeling, as mentioned
above.

While UQ has been reasonably well investigated in
atomistic ML for chemical and materials applications, UP
remains a relatively unexplored area. Nevertheless, UP is
essential for building confidence in the results. It provides a
comprehensive assessment of the entire modeling pipeline,
enabling the evaluation of the robustness of the final
results. Furthermore, UP helps identify the most influential
uncertainty sources, guiding targeted efforts to refine
and improve the modeling pipeline. In this section, we
introduce some of the efforts in UP for MD and microkinetic
simulations.
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5.1 Bayesian propagation

Given the posterior over model parameters p(0|D) (see
Section 2.2), the distribution of a QoI z can be written as

p(zlx, D) = [p(zlx,6)p (6ID) d6, (33)

where p(z|x, 6) is the likelihood of 8 to observe z given the
composed model z = h(x; 6). The integration, generally,
cannot be analytically evaluated for most QoI in MD and
microkinetic simulations. To address this, again, sampling
techniques can be employed. Eq. (33) can be approximated
by (Angelikopoulos et al. 2012)

1 M
p(zlx,D) = i > p(zlx, 6)). (34)

i=1

Assuming the likelihood p(z|x, 6) is a Gaussian with h(x;
0) as its mean, then the predictive mean and variance of
Eq. (34) can be respectively expressed as

1 M

_ 14
Zzﬂgzizﬁgh(X;ei), 35)
and
=1 S (52 (36)
T M-15"" ‘

The sampling-based Bayesian UP means selecting
multiple sets of model parameters 6, computing the QoI z;
using each parameter set, and then calculating their mean as
the final prediction and their variance as the uncertainty.
The sampling of the parameters can be done via MC
methods, such as MCMC (Berg 2004) and transitional MCMC
(Ching and Chen 2007).

Practically, it can also be viewed as an ensemble
approach, where each realization of the parameters is a
member of the ensemble. Therefore, for the UQ methods
discussed in Section 3, this UP method can be directly applied
to models trained with MC dropout and the ensemble
approach, but not for the others.

Using an NN interatomic potential trained with MC
dropout in MD simulations, Wen and Tadmor (2020) adopted
this sampling-based approach to propagate the uncertainty
in atomic forces to the mechanical stress on monolayer
graphene (Figure 13). As expected, the uncertainty in stress
increases as the graphene layer is compressed or stretched
from its equilibrium lattice parameter of 2.466 A.

Recently, various studies have investigated the effects
of uncertainty from ML models on microkinetic modeling.
Li et al. (2023) was able to propagate the uncertainty in
stoichiometric coefficients and parameters in the Arrhenius
law (Arrhenius 1889a,b) to the concentration of chemical
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Figure 13: Uncertainty propagation in molecular dynamics computation
of mechanical stresses in a monolayer graphene. Error bars indicate
uncertainty level. Adapted from Wen and Tadmor (2020) with a CC BY 4.0
license.

species in biodiesel production reaction systems, using the
so-called Bayesian chemical reaction NNs. In a microkinetic
study of ethanol steam reforming reactions, Xu and Yang
(2023) investigated the propagation of errors in binding
energy predicted by ML models to kinetic properties such
as reaction rates. Their results demonstrated that the
preferred reaction pathway varies depending on the used
ML model.

5.2 Linearized propagation

Linearized UP is a general approach that can be used
together with all UQ methods discussed in Section 3. Let §, be
the uncertainty associated with the output y of an ML model
Yy = fix; 0). Then for a QoI z that is a function of the model
output, z = g(y), we do a first-order Taylor expansion at y,
to obtain z = g (y,) + %’ (y —Y,)- With this linearization, the
uncertainty in z can be expressed as (Arras 1998):

5, - %s,

3y @37

meaning that the uncertainty in y can be propagated to z by
multiplying the gradient. In general, if g is a function of
multiple independent inputs, i.e., z = gyy, V2, ..., Ya), the
uncertainty in z can be written as (Arras 1998):

o ¥ (og ’ 2
6, = ; <6_yl) 8y

Once the uncertainty is obtained from a UQ method, it
can be readily propagated to the Qol z, using Eq. (37) or Eq.
(38). However, there are two challenges in applying this
approach in practice. First, it may not be immediately
obvious how to compute the gradients of g, which typically

represent physics-based simulation techniques such as MD
and microkinetic modeling. Second, while the approach is

(38)
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exact for a linear function g, it can introduce significant
errors when applied to a nonlinear function (Cho et al. 2015).

The linearized UP approach becomes very attractive if
the challenges are overcome. For example, Wen and Tadmor
(2020) reformulated the integration algorithm in an MD
simulation, and managed to propagate the uncertainty in
atomic forces to stresses. As seen from Figure 13, the pre-
dicted mean stress and uncertainty agree very well with
those from the sampling-based Bayesian approach. The
linearized approach is computationally more efficient than
the Bayesian approach, since it only needs one model eval-
uation, while the Bayesian approach requires multiple
model evaluations.

5.3 Sensitivity analysis

Sensitivity analysis examines how the uncertainty in a
model’s output can be apportioned to various sources of
uncertainty in its inputs. Ideally, uncertainty and sensitivity
analyses should be conducted in tandem; by working
together, they can pinpoint the most critical input parame-
ters, offering crucial insights into the model’s reliability and
providing guidance for further model refinement. Although
these techniques have not been widely employed together
with ML models yet, we expect this to happen soon in the
near future. To illustrate their potential, we introduce some
of their usage with classical non-ML models.

Given a Qol z = g(y), we can perturb the input by some
amount Ay and observe the change in the output Az. This
change, Az, can be interpreted as the propagated uncertainty
if we set the uncertainty in y as Ay. Typically, the input y lies
in an M-dimensional parameter space, i.e.,y = [y1, 2, ..., Vul;
then, depending on how Ay is chosen, we get local sensitivity
and global sensitivity. Local sensitivity refers to perturbing
each individual parameter y; and observing its effects on z
separately. Global sensitivity refers to exploring the entire
parameter space simultaneously, considering interactions
between the parameters.

Sensitivity analysis is an integral part of microkinetic
modeling (Motagamwala and Dumesic 2020). Local sensi-
tivity analysis like the derivative-based technique (Dopking
et al. 2018) and global sensitivity analysis such as the Sobol’
method (Sobol 2001) and the Morris method (Morris 1991)
have been widely employed. For example, Bensberg and
Reiher (2024) have recently leveraged these techniques to
automatically refine structures, reaction paths, and energies
in chemical reaction networks, and successfully identified a
small number of elementary reactions and compounds that
are essential for reliably describing the kinetics of the
Eschenmoser—Claisen rearrangement reactions (Wick et al.
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1964) of allyl alcohol and of furfuryl alcohol. In addition,
their Morris sensitivity analysis also provides the uncer-
tainty in the predicted concentrations. Similarly, Kreitz et al.
(2021) applied global uncertainty assessment and sensitivity
analysis to explore parametric uncertainties in microkinetic
models for CO, hydrogenation on the (111) surface of Ni. By
systematically generating numerous mechanisms, they
demonstrated how UQ can identify feasible models and
optimize predictions within the uncertainty space.
Sensitivity analysis has also been applied to quantify
the uncertainty in Qol obtained from MD simulations.
Information-theoretic approaches provide a powerful
framework for this purpose (Kurniawan et al. 2022). For a
QoI z that can be obtained from an MD simulation, an upper
bound for the uncertainty in z can be obtained as (Dupuis
et al. 2016; Pantazis and Katsoulakis 2013; Tsourtis et al. 2015):

|Eg.a0 (2] — Eo[2]] < \/Vare[z] /A7 (0)A0 39)

upon parameter perturbation A6, where Var denotes
the variance, and .7 (0) is the Fisher information, which
measures the amount of information that the trained
model carries about its parameter 6 (Cover and Thomas 2012;
Wen 2019). This provides an efficient way to investigate the
reliability of MD simulations. Using this approach, Wen et al.
(2017) studied the thickness of an MoS, sheet and found
that Eq. (39) provides a tight bound, demonstrating high
reliability of the MD predictions. Although Fisher informa-
tion can provide useful insights into the uncertainty in
MD simulations, the overall analysis is restricted to the
perturbations only in the vicinity of the equilibrium model
parameters.

5.4 Data uncertainty and propagation

The discussions in the above sections have primarily
focused on uncertainties and their propagation in ML model.
However, uncertainty is also inherent in chemical and
materials data itself. For example, for data generated using
DFT, the commonly employed semi-local density functional
approximations have well-known intrinsic errors (Cohen
et al. 2008; Perdew and Zunger 1981) that affect the accuracy
and reliability of the results. When data is derived from a
single semi-local density functional approximation, there is
no effective way to address data uncertainty, leaving its
impact on downstream properties often unaddressed.
Below, we discuss two approaches that apply systematic
statistical analysis to assess data uncertainty and its propa-
gation to downstream properties, particularly in the context
of microkinetic modeling.
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The first method, developed by Wellendorff et al. (2012),
is an ensemble-based approach that uses the same density
functional but introduces tunable parameters. This method
builds on the BEEF (Bayesian error estimation functional)
family (Mortensen et al. 2005), incorporating an exchange-
correlation functional (BEEF-vdW) with non-local correla-
tion terms and tunable parameters to accurately capture
interactions such as van der Waals forces, which are critical
for surface science and catalysis (Wellendorff et al. 2012).
Uncertainty estimates are then derived from an ensemble of
functionals generated by parameter perturbation, with the
ensemble’s standard deviation defining the uncertainty.

The second method, proposed by Walker et al. (2016), is
also an ensemble-based approach. However, rather than
perturbing a single functional, it employs multiple density
functionals from different rungs of Perdew’s “Jacob’s
Ladder” (Perdew and Schmidt 2001). In this approach, the
energies of intermediate and transition states are calculated
using various density functionals chosen for their applica-
bility to the target system. A latent model using factor
analysis (Rencher and Christensen 2012), is then developed
to capture shared predictions across functionals and their
unique variations. Finally, the predicted energies from the
latent model are refined using a secondary probabilistic
model to ensure consistency with reference data.

For both methods, once the corrected energies are
obtained, they can be used in calculating downstream Qols,
and the associated uncertainty in the energies can be prop-
agated using MC sampling as in Eq. (36). Using this approach,
the first method has been widely applied in computational
catalysis, from assessing reaction rate reliability (Lu et al.
2022) to identifying reaction mechanisms (Kreitz et al. 2023)
and analyzing surface coverage (Wang et al. 2019). The
second method has been successfully applied to determine
reaction pathways in catalysis, such as identifying dominant
mechanisms in the water-gas shift reaction through uncer-
tainty propagation to turnover frequency calculations
(Fricke et al. 2022; Walker et al. 2016, 2018).

While both methods can provide uncertainty in the data,
the limitations should be noted. The methodology overall
relies on fitting to experimental reference data or computed
data with higher accuracy, such as the G3/99 dataset of
experimental molecular formation energies (Curtiss et al.
2000) and the S22 dataset of intermolecular interaction en-
ergies (Jurecka et al. 2006). The reference data themselves,
however, carry uncertainty. Such uncertainty is often
assumed but not guaranteed to be negligible compared to
DFT calculations (Wang et al. 2021). Additionally, the density
functionals used or developed here are fitted to specific
material properties, and thus their accuracy may not be
transferable to other materials or properties (Mardirossian



DE GRUYTER

and Head-Gordon 2017; Medvedev et al. 2017). Thus, if the
functionals in the ensemble perform poorly for a particular
material or property, the resulting uncertainty, and any
conclusions based on them, can be unreliable. This suggests
that the pursuit of widely applicable density functionals,
supported by thorough benchmark studies (Kim et al. 2024;
Sheldon et al. 2021, 2024; Szaro et al. 2023), is equally vital
for advancing methods to improve data uncertainty
management.

6 Summary and outlook

In this work, we have provided a comprehensive overview
of the UQ approaches for atomistic ML. The UQ methods
are classified into three main categories: probabilistic,
ensemble, and feature space distance. The similarities,
differences, and connections between them were
discussed to provide an overall overview of the methods.
We have discussed metrics to evaluate the performance
of these UQ methods from different angles, focusing
on calibration, precision, accuracy, and efficiency. In
addition, we have emphasized the importance of UP
in downstream chemical and materials applications of
the ML models.

We deliberately exclude some important but advanced
topics to make the presentation more accessible and avoid
further complications. For example, we chose to focus on
UQ for NNs and ignore other methods such as Gaussian
processes (Rasmussen 2003), which inherently provide
predictive uncertainty. For the use of Gaussian processes in
materials and molecular problems, we refer readers to the
thorough review by Deringer et al. (2021). Additionally, we
do not explicitly discuss whether the aleatoric or epistemic
uncertainty is modeled by a UQ method; instead, we provide
the total uncertainty, as it is the combined effect of both
sources that is relevant for most practical purposes. Never-
theless, works such as Gustafsson et al. (2020), Gawlikowski
et al. (2023), and Heid et al. (2023) provide further discussion
on this topic.

We have identified several challenges in UQ and UP for
atomistic ML, along with potential opportunities to address
these challenges. First, existing benchmark studies suggest
that the performance of UQ methods is highly dependent on
the datasets and metrics being used. There is no universal
UQ method that consistently outperforms others in all
scenarios. Thus, there is a high demand for a set of best
practices and guidelines for UQ in atomistic ML. These
guidelines should provide recommendations on choosing
appropriate UQ methods based on factors such as the nature
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of the dataset, the complexity of the ML model, the available
computational resources, and the downstream applications
of the ML model.

Asecond challenge is the large miscalibration of existing
UQ methods. The calibration curves of many UQ methods
can deviate significantly from the diagonal line, suggesting
that the predicted uncertainties do not match well with the
observed errors. A straightforward solution is to perform
uncertainty recalibration. Uncertainty recalibration for
ML models is a relatively new field, and thus it is rarely
conducted in atomistic ML. We believe there is great
potential to explore uncertainty recalibration techniques
tailored for atomistic ML models, improving their calibra-
tion and predictive reliability.

A third pressing challenge is related to the scarcity of
UP techniques. Although UQ is reasonably investigated, UP
receives far less attention despite its importance in chemical
and materials modeling. We suspect that this is partly due to
the complexity of integrating UQ methods with physics-
based simulations, which often involve solving differential
equations and dealing with complex boundary conditions.
A promising direction to tackle the challenge is to develop
fully automatic differentiable simulation approaches. These
approaches combine automatic differentiation with physics-
based simulations, enabling end-to-end differentiation of
entire simulation pipelines. As a result, they will allow for
the seamless propagation of uncertainties from the ML
models to the quantities of interest.

If the existing challenges in UQ and UP can be overcome,
we foresee substantial opportunities to accelerate the
adoption and development of reliable and robust atomistic
ML models. This will enable the exploration of complex
chemical and materials systems with quantified un-
certainties, ultimately leading to more informed decision-
making and accelerated discovery.

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contributions: The authors have accepted re-
sponsibility for the entire content of this manuscript and
approved its submission.

Use of Large Language Models, AI and Machine Learning
Tools: None declared.

Conflict of interest: The authors state no conflict of
interest.

Research funding: This work is supported by the National
Science Foundation under Grant No. 2316667 and the startup
funds from the Presidential Frontier Faculty Program at the
University of Houston.

Data availability: Not applicable.



354 —— . Dai et al.: Uncertainty in atomistic machine learning

Abbreviations

CDF Cumulative distribution function
DFT Density functional theory

ENCE Expected normalized calibration error
i.i.d. Independent and identically distributed
MAE Mean absolute error

MC Monte Carlo

MCMC Markov chain Monte Carlo

MD Molecular dynamics

ML Machine learning

MLE Maximum likelihood estimation

NLL Negative log-likelihood

NN Neural network

QoI Quantity of interest

RMSE Root-mean-square error

up Uncertainty propagation

uQ Uncertainty quantification
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