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Cartesian atomic moment machine
learning interatomic potentials

Check for updates

Mingjian Wen1 , Wei-Fan Huang2, Jin Dai2 & Santosh Adhikari2

Machine learning interatomic potentials (MLIPs) have substantially advanced atomistic simulations in
materials science and chemistry by balancing accuracy and computational efficiency. While leading
MLIPs rely on representing atomic environments using spherical tensors, Cartesian representations
offer potential advantages in simplicity and efficiency. Here, we introduce the Cartesian Atomic
Moment Potential (CAMP), an approach to building MLIPs entirely in Cartesian space. CAMP
constructs atomic moment tensors from neighboring atoms and employs tensor products to
incorporate higher body-order interactions, providing a complete description of local atomic
environments. Integrated into a graph neural network (GNN) framework, CAMP enables physically
motivated, systematically improvable potentials. The model demonstrates excellent performance
across diverse systems, including periodic structures, small organic molecules, and two-dimensional
materials, achieving accuracy, efficiency, and stability in molecular dynamics simulations that rival or
surpass current leadingmodels.CAMPprovidesapowerful tool for atomistic simulations to accelerate
materials understanding and discovery.

Machine learning interatomic potentials (MLIPs) have been widely
employed inmolecular simulations to investigate the properties of all kinds
ofmaterials, ranging from small organicmolecules to inorganic crystals and
biological systems.MLIPsoffer abalancebetweenaccuracyandefficiency1–4,
making them a suitable choice between first-principles methods such as
density functional theory (DFT) and classical interatomic potentials such as
the embedded atom method (EAM)5.

Since the introduction of the pioneering Behler–Parrinello neural
network (BPNN) potential6 and the Gaussian approximation potential
(GAP)7, many valuable MLIPs have been developed8–19. At the same time,
techniques have emerged to assess the reliability of MLIP predictions by
quantifying uncertainties and evaluating their influence on downstream
properties20–24. Despite this progress, the pursuit of enhancing and devel-
oping newMLIPs remains ongoing. The current leadingMLIPs in terms of
accuracy and stability in molecular dynamics (MD) simulations are those
basedongraphneural networks (GNNs). Thesemodels represent an atomic
structure as a graph and perform message passing between atoms to pro-
pagate information25. The passed messages can be either scalars10,12,
vectors13, or, more generally, tensors16–19. UsingGNNs, a couple of universal
MLIPs have recently been developed26–32, which can cover a wide range of
materials with chemical species across the periodic table.

At the core of any MLIP lies a description of the atomic environment,
which converts the information contained in an atomic neighborhood to a
numerical representation that can then be updated and used in an ML

regression algorithm. The representation must satisfy certain symmetries
(invariance to permutation of atoms, and invariance or equivariance to
translation, rotation, and inversion) inherent to atomic systems. Despite the
diverse choice of ML regression algorithms, the atomic environment
representation is typically constructed by expanding atomic positions on
some basis functions. Early works employ manually crafted basis functions
for the bond distances and bond angles, such as the atom-centered sym-
metry functions used in BPNN6 and ANI-133. More systematic repre-
sentations have been developed and adopted in GAP7, SNAP34, ACE35,
NequIP17, and MACE16, among others. In these models, a representation is
obtained by first expanding the atomic environment using a radial basis
(e.g., Chebyshev polynomials) and the spherical harmonics angular basis to
obtain tensorial equivariant features. The equivariant features are then
updated and finally contracted to yield the scalar potential energy.

Another approach seeks to develop atomic representations andMLIPs
entirely in Cartesian space, bypassing the need for spherical harmonics. This
can potentially offer greater simplicity and reduced complexity compared to
models using spherical representations. The MTP model by Shapeev36

adopted this approach, which constructs Cartesian moment tensors to
capture the angular information of an atomic environment. It has been
shown thatMTPandACEarehighly related given that amoment tensor can
be expressed using spherical harmonics37. TeaNet18 and TensorNet19 have
explored the use of Cartesian tensors limited to the second rank to create
MLIPs.The recentCACEmodel38 has extended the atomic cluster expansion
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to Cartesian space and subsequently built MLIPs on this foundation. These
works represent excellent efforts toward building MLIPs using a fully Car-
tesian representation of atomic environments. However, their performance
has not yet matched that of models built using spherical tensors.

In this work, we propose the Cartesian Atomic Moment Potential
(CAMP), a systematically improvable MLIP developed in Cartesian space
under the GNN framework. Inspired byMTP36, CAMP employs physically
motivated moment tensors to characterize atomic environments. It then
generates hypermoments through tensor products of thesemoment tensors,
effectively capturing higher-order interactions. We have devised specific
construction rules for atomic andhypermoment tensors that directmessage
flow from higher-rank to lower-rank tensors, ultimately to scalars. This
approach aligns with our objective of modeling potential energy (a scalar
quantity) and significantly reduces the number of moment tensors,
enhancing computational efficiency. These moment tensors are subse-
quently integrated into a message-passing GNN framework, undergoing
iterative updates and refinement to form the final CAMP. To evaluate the
performance of the model, we have conducted tests across diverse material
systems, including periodic LiPS inorganic crystals17 and bulk water39, non-
periodic small organic molecules8, and partially periodic two-dimensional
(2D) graphene40. These comprehensive benchmark studies demonstrate that
CAMP is an accurate, efficient, and stable MLIP for molecular simulations.

Results
Model Architecture
CAMP is a GNN model that processes atomic structures, utilizing atomic
coordinates, atomicnumbers, and cell vectors as input, andpredicts the total
potential energy, stresses on the structure, and the forces acting on
individual atoms.

Figure 1presents a schematic overviewof themodel architecture. In the
following, we discuss the key components and model design choices.

Atomic graph. An atomic structure is represented as a graph G(V, E)
consisting of a set of nodes V and a set of edges E. Each node in V
represents an atom, and an edge in E is created between two atoms if they
arewithin a cutoff distance of rcut (Fig. 1a). An atomnode i is described by
a 3-tuple (ri, zi, hi), where ri is the position of the atom, zi is the atomic
number, and hi is the atom feature. The vector rij = rj− ri associated with
the edge from atom i to atom j gives their relative position.

The atom feature hi is a set of tensors that carry two indices u and v,
becoming hiuv in its full form, where u and v denote the channel and rank of
each feature tensor, respectively. The use of channels allows for multiple

copies of tensors of the same rank, helping to increase the expressiveness of
the feature.

The atom features are mixed across different channels using a linear
mapping:

hiuv ¼
X
u0

Wuu0h
i
u0v; ð1Þ

whereWuu0 are trainable parameters.

Radial basis. The edge length rij = ∥rij∥ is expanded using a set of radial
basis functions,Bu(r

ij, zi, zj), indexed by the channelu. FollowingMTP36,41,
each basis function is a linear combination of the Chebyshev polynomials
of the first kind Qβ:

Buðrij; zi; zjÞ ¼
XNβ

β¼0

Wβ
uzizjQ

β rij

rcut

� �
; ð2Þ

where Nβ denotes the maximum degree of the Chebyshev polynomials.
Separate trainable parameters Wβ

uzizj are used for different atom pairs,
enabling customized radial basis dependent on their atomic numbers zi and
zj. Moreover, the radial basis Bu allows the model to scale to any number of
chemical species without increasing the model size.

Angular part. The angular information of an atomic environment is
contained in the normalized edge vectors, r̂ ¼ r=r, where we have
omitted the atom indices i and j in rij and rij for simplicity. Unlike many
existing models that expand it on spherical harmonics, we directly adopt
the Cartesian basis. The rank-vpolyadic tensor of r̂ is constructed as

Dv ¼ r̂ � r̂ � � � � � r̂ ðv of r̂Þ; ð3Þ

where ⊗ denotes a tensor product. For example, D0 = 1 is a scalar, D1 ¼
r̂ ¼ ½̂rx; r̂y; r̂z� is a vector, andD2 ¼ r̂ � r̂ is a rank-2 tensor, which can be
written in a matrix form as

D2 ¼
r̂2x r̂xr̂y r̂x r̂z

r̂y r̂x r̂2y r̂y r̂z

r̂z r̂x r̂z r̂y r̂2z

2
664

3
775; ð4Þ

Fig. 1 | Schematic overview of the CAMP model
architecture. aAn atomic structure is represented as
a graph. Each atom is associatedwith a featureh, and
all atoms within a distance of rcut to a center atom i
constitute its local atomic neighborhood. b Atomic
numbers zi and zj of a pair of atoms and their relative
position vector r are expanded into the radial part R
and angular part D. c Atomic moment M of the
central atom is obtained by aggregating information
from neighboring atoms. dHyper momentH of the
central atom is computed by self-interactions
between atomic moments. e Hyper moments Ht of
different layers t are used to construct the energy of
the central atom via some mapping function V.
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where r̂x , r̂y , and r̂z are the Cartesian components of r̂ (Fig. 1b). AnyDv is
symmetric, as can be seen from the definition in Eq. (3). In CAMP, the
angular information of an atomic environment is captured by D0, D1, D2,
and so on, which are straightforward to evaluate. In full notation with atom
indices, a polyadic tensor is written as Dij

v .

Atomicmoment. A representation of the local atomic environment of an
atom is constructed from the radial basis, angular part, and atom feature,
which we call the atomic moment:

Mi
uv;p ¼

X
j2N i

Ruvv1v2
hjuv1�

cDij
v2
; ð5Þ

whereN i denotes the set of neighboring atoms within a distance of rcut to
atom i. The radial part is obtained by passing the radial basis through a
multilayer perceptron (MLP), Ruvv1v2

¼ MLPðBuÞ. For different combina-
tions of v, v1, and v2, different MLPs are used. The symbol ⊙c denotes a
degree-c contraction between two tensors. For example, for tensorsA andB
of rank-2 and rank-3, respectively,A⊙2BmeansCk =∑ijAijBijk, resulting in
a rank-1 tensor. In other words, c is the number of indices contracted away
in eachof the two tensors involved in the contraction; thus, theoutput tensor
has a rank of v= v1+ v2− 2c.Wedenote the combination of v1, v2, and c as a
path: p = (v1, v2, c). In Eq. (5), multiple paths can result in output tensors of
the same rank v. For example,p=(2, 3, 2) andp=(1, 2, 1)both lead to atomic
moment rank v = 1. This is why the index p is used inMi

uv;p to denote the
path from which the atomic moment is obtained.

The atomic moment carries significant physical implications. For a
physical quantityQ at a distance r froma referencepoint, thenthmoment of
Q is defined as rnQ. For example, when Q represents a force and n = 1, rQ
corresponds to the torque. Eq. (5) generalizes this concept, with the feature
hjuv1 of atom j acting asQ, andDij

v2
serving as the “distance” r. The radial part

Ruvv1v2
functions as a weighting factor, modulating the relative contribution

of different atoms j. This iswhywe refer to the output inEq. (5) as the atomic
moment.

By construction, the atomic moment is symmetric. This is because,
first, both hjuv1 (explained below around Eq. (9)) and Dij

v2
are symmetric;

second, an additional constraint c= v1 < v2 is imposed.The constraintmeans
that the indices of hjuv1 and thus the output atomic moment has v = v2− v1
indices fromDij

v2
. A detailed example of evaluating Eq. (5) is provided in the

Supplementary Information (SI).
Atomic moment tensors of the same rank v from different paths are

combined using a linear layer:

Muv ¼
X
p

Wuv;pMuv;p; ð6Þ

in whichWuv,p are trainable parameters, and the atom index i is omitted for
simplicity.

Hyper moment. From atomic moments, we create the hyper moment as

Huv;p ¼ Muv1
�c1Muv2

�c2 :::�cn�1Muvn
: ð7Þ

Atomic moments capture two-body interactions between a center
atom and its neighbors. Three-body, four-body, and higher-body interac-
tions are incorporated into the hyper moments via the self-interactions
between atomic moments in Eq. (7). The hyper moments can provide a
complete description of the local atomic environment by increasing the
order of interactions36,37, which is crucial for constructing systematically
improvableMLIPs.Thehypermoments are analogous to theB-basis used in
ACE35 and MACE16.

The primary target of anMLIPmodel is the potential energy, a scalar
quantity. Aligned with this, we construct hyper moments such that
information flows from higher-rank atomic moment tensors to lower-
rank ones, ultimately to scalars. Specifically, we impose the following rule:

let Muvn
be the tensor of the highest rank among all atomic moment

tensors in Eq. (7), then possible contractions are only between it and the
other atomicmoments, but not betweenMuv1

andMuv2
, and so forth. This

design choice substantially reduces the number of hyper moments, which
simplifies both the model architecture and the overall training process.
Moreover, similar to the atomicmoment, the indices of lower-rank atomic
tensorsMuv1

;Muv2
; ::: are completely contracted away, and therefore we

have v = vn − (v1 + v2 + . . . + vn−1). This guarantees that Huv,p is
constructed to be symmetric. Multiple contractions can result in hyper
moments of the same rank v; they are indexed by p. A detailed example of
evaluating Eq. (7) to create hyper moments is provided in the SI.

Message Passing. The messages to an atom i from all neighboring
atoms are chosen to be a linear expansion over the hyper moments:

muv ¼
X
p

Wuv;pHuv;p: ð8Þ

Atom features are then updated using a residual connection42 by linearly
combining the message and the atom feature of the previous layer:

htuv ¼
X
u0

W1;uu0mu0v þ
X
u0

W2;uu0h
t�1
u0v ; ð9Þ

where t is the layer index.Atomfeatures in the input layerh0uv0 consist onlyof
scalarsh0u0, obtained as au-dimensional embedding of the atomic number z.
By construction, htuv is symmetric.

Output. Themessage passing is performedmultiple timesT.We find that
typical values of two or three are good enough based on benchmark
studies to be discussed in the following sections. The atomic energy of
atom i is then obtained from the scalar atom features hi;tu0 from all layers:

Ei ¼
XT
t¼1

Vðhi;tu0Þ: ð10Þ

V is set to anMLP for the last layerT, and a linear function for others layers,
that is,Vðhi;tu0Þ ¼

P
u W

t
uh

i;t
u0 for t < T. The atomic energies of all atoms are

summed to get the total potential energy

E ¼
X
i

Ei: ð11Þ

Forces on atom i can then be computed as

Fi ¼ � ∂E
∂ri

: ð12Þ

Computational complexity. Themost computationally demanding part
of CAMP is creating the atomic moments and hyper moments. Let vmax
represent the maximum rank of tensors used in the model. This implies
that all features h, atomicmomentsM, and hypermomentsH have ranks
up to vmax. The time complexity for constructing both the atomic
moment in Eq. (5) and the hyper moment in Eq. (7) isOð3vmax Þ (detailed
analysis in the SI). In contrast, for models based on spherical tensors
(such as NequIP17 and MACE16), the time complexity of the
Clebsch–Gordan tensor product is OðL6Þ, where L is the maximum
degree of the irreducible spherical tensors. ACartesian tensor (e.g.,M and
H) of rank v can be decomposed as the sumof spherical tensors of degrees
up to v43; therefore, as far as the computational cost is concerned, vmax and
L can be thought to be equivalent to each other. Asymptotically, as L (or
vmax) increases, the exponential-scaling Cartesian models are computa-
tionally less efficient than the polynomial-scaling spherical models.
Nevertheless, empirical evidence suggests that, for many material sys-
tems, the adopted values of L or (vmax) are below five16,17,44. In such cases,
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Cartesianmodels should bemore computationally efficient.We note that
there exist techniques to reduce the computational cost of the
Clebsch–Gordan tensor product in spherical models from OðL6Þ to
OðL3Þ, such as reducing SO(3) convolutions to SO(2)45 and replacing
SO(3) convolutions by matrix multiplications46. When such techniques
are adopted, spherical models can be more efficient.

Inorganic crystals
We first test CAMP on a dataset of inorganic lithium phosphorus sulfide
(LiPS) solid-state electrolytes17. Multiple models were trained using varying
numbers of training samples (10, 100, 1000, and 2500), validated on
1000 samples, and tested on 5000 samples (training details in Methods).
Mean absolute errors (MAEs) of energy and forces on the test set are listed in
Table 1. Compared with NequIP17, CAMP yields smaller or equal errors on
seven of the eight tasks. The learning curve in Fig. 2 exhibits a linear decrease
in both energy and forcesMAEs on a log-log scale as the number of training
samples increases. These results demonstrate CAMP’s accuracy and its
capacity for further improvement with increased data.

We further examine the performance inMD simulations, focusing on
computing thediffusivity of lithium ions (Li+) inLiPS.Diffusivity is a crucial
characteristic for assessing the potential of solid materials as electrolytes in
next-generation solid-state batteries. Following existing benchmark
studies47, we trained another model with 19000 structures with the same
validation and test sets discussed above. Five structures were randomly
selected fromthe test set andan independentMDsimulationwasperformed

for each structure.As seen inFig. 3,CAMPaccurately captures the structural
informationof LiPS, reproducing the radial distribution function (RDF) and
the angular distribution function (ADF) of the S–P–S tetrahedral angle (Fig.
S1 in the SI) from ab initio molecular dynamics (AIMD) simulations.

CAMP can yield stable MD simulations. It is known that MLIPs that
performwell on energy and forces do not necessarily guarantee high-quality
MD simulations. In particular, MD simulations can collapse due to model
instability. Therefore, before calculating the diffusivity, we checked the
simulation stability. Stability is measured as the difference between the RDF
averaged over a time window and the RDF of the entire simulation (see
Methods). CAMP shows excellent stability, reaching the entire simulation
time of 50 ps in all five simulations (Table 2). In ref. 47, a small timestep of
0.25 fs was adopted in theMD simulations using themodels in Table 2.We
also tested CAMP with a large timestep of 1 fs and found that all five
simulations are still stable up to 50 ps (see Fig. S2 in the SI).

Thediffusion coefficientDof Li+ in LiPS calculated fromCAMPagrees
well with the AIMD result. After confirming the stability, D was calculated
using theEinstein equation byfitting a linear line between themean squared
displacement (MSD) of Li+ and the correlation time (see Methods). The
MSDs of the five MD runs are shown in Fig. 3c, from which the diffusion
coefficient is calculated as D = (1.08 ± 0.08) × 10−5 cm2/s. This agrees
reasonably well with AIMD result of 1.37 × 10−5 cm2/s17.

Bulk water
To evaluate CAMP’s ability tomodel complex liquid systems, we test it on a
dataset of bulkwater39. SeeMethodsDataset and trainingdetails are inRoot-
mean-square errors (RMSEs) of energy and forces on the test set are listed in
Table 3. In general, GNN models (REANN48, NequIP17, MACE16, and
CACE38) have smaller errors than single-layer ACE35 and descriptors-based
BPNN39. Our CAMP achieves the best performance on both energy and
forces, with RMSEs of 0.59 meV/atom and 34 meV/Å, respectively. We
observe that CACE38 demonstrates comparable RMSEs in energy when
compared to CAMP. CACE38 is a recent model also developed entirely in
Cartesian space. Similar to CAMP, it also first constructs the atomic basis
(Eq. (5)), then builds the product basis on top of the atomic basis (Eq. (7)),
and iteratively updates the features under a GNN framework to refine the
representations.Amajor difference is thatCACE is formulated based on the
atomic cluster expansion, while CAMP is designed using the atomic
moment. The connections between CAMP and CACE, as well as other
models, are further elaborated in Discussion.

CAMP accurately reproduces experimental structural and dynamical
properties of water. Figure 4 shows the oxygen–oxygen RDF of water from
MD simulations using CAMP (computation details in Methods), together
with experimental observations obtained from neutron diffraction49 and
x-ray diffraction50. The RDF by CAMP almost overlaps with the x-ray
diffraction result, demonstrating its ability to capture the delicate structural
features of water. We also calculated the diffusion coefficient of water (1 g/
cm3) at 300 K to be D = (2.79 ± 0.18) × 10−5 cm2/s, which is in excellent
agreement with AIMD results of 2.67 × 10−5 cm2/s51. The model shows
superior stability for water, producing stable MD simulations at high tem-
peratures up to 1500 K. The RDF and the diffusion coefficient at various
high temperatures are presented in Fig. S3 in the SI.

We examine the efficiency of CAMP by measuring the number of
completed steps per second in MD simulations. It is not a surprise that
DeePMD9 runs much faster due to its simplicity in model architecture,
although its accuracy falls short when compared with more recent models
(Table 3). For thosemore accuratemodels, CAMP is about 1.4 and 3.6 times
faster than CACE38 and NequIP17, respectively, on the water system of 192
atoms.More running speed data of othermodels are provided inTable S1 in
the SI.

Small organic molecules
The MD17 dataset consists of AIMD trajectories of several small organic
molecules8. For each molecule, we trained CAMP on 950 random samples,
validated on 50 samples, and the rest were used for testing (dataset and

Table 1 | Performance of CAMP on the LiPS dataset

Training size NequIP CAMP

10 Energy 2.03 1.63 (0.16)

Forces 97.8 76.4 (3.3)

100 Energy 0.44 0.44 (0.02)

Forces 25.8 21.6 (0.6)

1000 Energy 0.12 0.12 (0.00)

Forces 7.7 7.4 (0.4)

2500 Energy 0.08 0.08 (0.00)

Forces 4.7 4.9 (0.1)

MAEs of energy and forces are in the units of meV/atom and meV/Å, respectively. Bold values
represent the smallestMAEs in each row. Errors shown in parentheses are obtained as the standard
deviations from five independently trained CAMP models.

Fig. 2 | Learning curve of CAMP. On a log-log scale, the MAEs of both energy
(meV/atom) and forces (meV/Å) decrease linearly with the training set size.
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training details in Methods). MAEs of energy and forces by CAMP and
otherMLIPs are listed in Table 4.While NequIP17 generally maintains high
performance, CAMP demonstrates high competitiveness. It surpasses
NequIP in energy predictions for three out of seven molecules and ranks
second in both energy and force predictions across various cases.

We further tested the ability of CAMP to maintain long-time stable
MD simulations. Following the benchmark study in ref. 47, 9500, 500, and
10,000 molecules were randomly sampled for training, validation, and
testing, respectively. With the trained models, we performed MD simula-
tions at 500K for 300ps and examined the stability bymeasuring the change

in bond length during the simulations (seeMethods). Figure 5 presents the
results for Aspirin and Ethanol (numerical values in Table S2 in the SI). In
general, a small forcesMAE does not guarantee stableMD simulations47, as
seen from a comparison between ForceNet and GemNet-T. GemNet-T has
a much smaller MAE of forces, but its stability is not as good as ForceNet.
For CAMP, its MAE of forces is slightly larger than that of, e.g. GemNet-T
and SphereNet, but it can maintain stable MD simulations for the entire
simulation time of 300 ps, a significant improvement over most of the
existing models.

In terms of running speed, similar patterns are observed here as those
reported in thewater system.Models based on simple scalar features such as
SchNet10 andDeepPot-SE52 are faster than those based on tensorial features,
although they are far less accurate (Fig. 5). For both Aspirin and Ethanol,
CAMP can complete about 33 steps per second in MD simulations on a
single NVIDIA V100 GPU, which is approximately 1.2, 1.4, and 3.9 times
faster than GemNet-T53, SphereNet54, and NequIP17, respectively.

The MD17 dataset was adopted due to the excellent benchmark study
by Fu et al.47, which provides a consistent basis for comparing different
models. However, it has been observed that the MD17 dataset contains
significant numerical errors, prompting the introduction of the rMD17
dataset to address this issue55. We evaluated CAMP on the aspirin and
ethanolmolecules fromthe rMD17dataset, and it demonstrates competitive
performance.WhileCAMPhas errorshigher than those of leading spherical
models likeNequIP17,Allegro56, andMACE16, it outperformsmodels suchas
GAP7, FCHL57, ACE35, and PaiNN13. Detailed results are presented in Table
S3 of the SI.

Two-dimensional materials
In addition to periodic systems and small organicmolecules, we evaluate the
performance of CAMP on partially periodic 2D materials. These materials

Table 2 | Results on LiPS for models developed with 19000 training samples

DeepPot-SE52 SchNet10 DimeNet12 PaiNN13 SphereNet54 ForceNet70 GemNet-T53 NequIP17 CAMP

Forces 40.5 28.8 3.2 11.7 8.3 12.8 1.3 3.7 3.6

Diffusivity 0.38 0.30 0.40 0.40 0.24 0.34 0.18

Stability 4 (3) 50 (0) 48 (4) 50 (0) 50 (0) 26 (8) 50 (0) 50 (0) 50 (0)

MAE of forces andMAE of Li+ diffusivity are reported in meV/Å and 10−5 cm2/s, respectively. The reference diffusivity is 1.35 × 10−5 cm2/s. Stability is measured byMD simulation time in picoseconds, with
standard deviations obtained from five independent runs shown in parentheses. All results are obtained from ref. 47, except those for CAMP.

Table 3 | Model performance on the water dataset

BPNN39 ACE35 REANN48 DeePMD9 NequIP17 MACE16 CACE38 CAMP

Energy 2.3 1.7 0.8 2.1 0.94 0.63 0.59 0.59 (0.002)

Forces 120 99 53 92 45 36 47 34 (0.1)

Speed 61.8 3.9 9.8 14.2

RMSEs of energy and forces are in the units of meV/atom andmeV/Å, respectively. Speed is measured as completed steps per second in MD simulations of the water system of 192 atoms, using a single
NVIDIAV100GPU.All energyand forcesRMSE results, exceptCAMP, are from ref. 38.DeePMDandNequIP running speed results are from ref. 47. Errors shown inparenthesesareobtainedas the standard
deviations from five independently trained CAMP models.

a b c

Fig. 3 | MD simulation results on LiPS. a Radial distribution function. bAngular distribution function for the S–P–S tetrahedral angle. cMean squared displacement of Li+

in LiPS. Five MD simulations are performed, and the calculated Li+ diffusion coefficient is D = (1.08 ± 0.08) × 10−5 cm2/s.

Fig. 4 | Oxygen–Oxygen RDF of water. Experimental neutron diffraction49 and
x-ray diffraction50 results are shown for comparison.
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exhibit distinct physical and chemical properties. Despite their significance,
to the best of our knowledge, no standardized benchmark dataset exists for
MLIPs for 2D materials. We have thus constructed a new DFT dataset of
bilayer graphene, building upon our previous investigations of carbon
systems40. See Methods for detailed information on this new dataset.

Widely used empirical potentials for carbon systems, such as
AIREBO58, AIREBO-M59, and LCBOP60 have large errors in predicting both
the energy and forces of bilayer graphene. TheMAEs on the test set against
DFT results are on the order of hundreds ofmeV/atom for energy andmeV/
Å for forces (Table 5). This is not too surprising given that: first, these
potentials are general-purpose models for carbon systems, which are not
specifically designed formultilayer graphene systems; second, their training
data were experimental properties and/or DFT calculations using different
density functionals from the test set. MLIPs such as hNN40 (a hybrid model

that combines BPNN6 and Lennard–Jones61), which was trained on the
same data as used here, can significantly reduce the errors to 1.4meV/atom
for energy and 46.0 meV/Å for forces. CAMP can further drive the MAEs
down to 0.3 meV/atom for energy and 6.3 meV/Å for forces.

It is interesting to investigate the interlayer interaction between the
graphene layers, which controlsmany structural,mechanical, and electronic
properties of 2D materials62,63. Here, we focus on the energetics in different
stacking configurations: AB, AA, and saddle point (SP) stackings (Fig. 6a).
Empirical models such as LCBOP cannot distinguish between the different
stacking states at all. The interlayer energy versus layer distance curves are
almost identical between AB and AA (Fig. 6b), and the generalized stacking
fault energy surface is nearly flat (not shown), with amaximumvalue on the
order of 0.01 meV/atom. This is also the case for AIREBO and AIREBO-M
(we refer to ref. 40 for plots). On the contrary, CAMP and hNN can clearly

Table 4 | Model performance on the MD17 dataset

Molecule SchNet10 DimeNet71 sGDML8 PaiNN13 NewtonNet72 NequIP17 CAMP

Aspirin Energy 16.0 8.8 8.2 6.9 7.3 5.7 8.7 (0.7)

Forces 58.5 21.6 29.5 14.7 15.1 8.0 20.5 (1.5)

Ethanol Energy 3.5 2.8 3.0 2.7 2.6 2.2 2.5 (0.1)

Forces 16.9 10.0 14.3 9.7 9.1 3.1 7.6 (0.4)

Malonaldehyde Energy 5.6 4.5 4.3 3.9 4.2 3.3 3.9 (0.0)

Forces 28.6 16.6 17.8 13.8 14.0 5.6 12.7 (0.3)

Naphthalene Energy 6.9 5.3 5.2 5.0 5.1 4.9 4.2 (0.0)

Forces 25.2 9.3 4.8 3.3 3.6 1.7 4.0 (0.3)

Salicylic acid Energy 8.7 5.8 5.2 4.9 5.0 4.6 4.6 (0.3)

Forces 36.9 16.2 12.1 8.5 8.5 3.9 11.0 (2.1)

Toluene Energy 5.2 4.4 4.3 4.1 4.1 4.0 4.2 (0.2)

Forces 24.7 9.4 6.1 4.1 3.8 2.0 4.6 (0.6)

Uracil Energy 6.1 5.0 4.8 4.5 4.6 4.5 4.4 (0.0)

Forces 24.3 13.1 10.4 6.0 6.5 3.3 7.2 (0.3)

MAEs of energy and forces are in the units of meV and meV/Å, respectively. Bold: smallest; underline : second smallest. Errors shown in parentheses are obtained as the standard deviations from five
independently trained CAMP models.

Fig. 5 | Comparison of MAE of forces, MD stabi-
lity, and running speed on small molecules. The
forces MAE, stability, and running speed are nor-
malized by their maximum values for easier visua-
lization. All numerical values are provided in Table
S2 in the SI. Error bars indicate the standard
deviation from fiveMD runs using different starting
atomic positions. Computational speed is measured
on a single NVIDIA V100 GPU.

Table 5 | Results on the bilayer graphene dataset

AIREBO58 AIREBO-M59 LCBOP60 hNN40 CAMP

Energy 659.9 671.2 718.3 1.4 0.35 (0.05)

Forces 194.6 186.9 166.1 46.0 6.26 (0.04)

MAEs of the energy and forces are in the units of meV/atom andmeV/Å, respectively. Errors shown in parentheses are obtained as the standard deviations from five independently trained CAMPmodels.

https://doi.org/10.1038/s41524-025-01623-4 Article

npj Computational Materials |          (2025) 11:128 6

www.nature.com/npjcompumats


distinguish between the stackings. Both the interlayer energy versus layer
distance curves and the generalized stacking fault energy surface agree well
with DFT references, and CAMP has a slightly better prediction of the
energy barrier (ΔESP-AB) and the overall energy corrugation (ΔEAA-AB). The
hNN model is specifically designed as an MLIP for 2D materials, and its
training process is complex, requiring separate training of the
Lennard–Jones and BPNN components. In contrast, CAMP does not
require such special treatment and is straightforward to train.

Discussion
In thiswork,wedevelopCAMP,a newclass ofMLIP that is based on atomic
moment tensors andoperates entirely inCartesian space.CAMP isdesigned
to be physically inspired, flexible, and expressive, and it can be applied to a
wide range of systems, including periodic structures, small organic mole-
cules, and 2Dmaterials. Benchmark tests on these systems demonstrate that
CAMP achieves performance surpassing or comparable to current leading
models based on spherical tensors in terms of accuracy, efficiency, and
stability. It is robust and straightforward to train, without the need to tune a
large number of hyperparameters. In all the tested systems, we only need to
set four hyperparameters: the number of channels u, the maximum tensor
rank vmax, the number of layers T, and the cutoff radius rc to achieve good
performance.

CAMP is related to existingmodels in severalways.As shown in ref. 37,
ACE35 and MTP36 can be viewed as the same model, with the former con-
structed in spherical space while the latter in Cartesian space. Both are
single-layer models without iterative feature updates. Loosely speaking,
MACE16 and CAMP can be regarded as a generalization of the spherical
ACEand theCartesianMTP, respectively, tomultilayerGNNswith iterative
feature updates and refinement. The atomic moment in Eq. (5) and hyper
moment inEq. (7) are related to theA-basis andB-basis inACEandMACE.
The recent CACEmodel is related to MACE and CAMP. BothMACE and
CACE are based on atomic cluster expansion, but MACE implements this
expansion in spherical space while CACE builds it in Cartesian space. Both

CAMP and CACE develop features in Cartesian space, but CAMP uses
atomicmomentswhileCACEemploys atomic cluster expansion.Moreover,
CAMP generalizes existing Cartesian tensor models such as TeaNet18 and
TensorNet19 that use at most second-rank tensors to tensors of arbitrary
rank.Despite these connections, CAMP is unique in its design of the atomic
moment and hyper moment, and the selection rules that govern the tensor
contractions. These characteristics make CAMP a physically inspired,
flexible, and expressive model.

Beyond energy and forces, CAMP can be extended to model tensorial
properties. The atom features used in CAMP are symmetric Cartesian
tensors, which can be used to output tensorial properties with slight mod-
ifications to the output block. For example,NMR tensors can bemodeledby
selecting and summing the scalar, vector, and symmetric rank-2 tensor
components of the hyper moments, rather than using only the scalar
component for potential energies. However, the current implementation of
CAMP in PyTorch has certain limitations. All feature tensors are stored in
full form, without exploiting the fact that they are symmetric. In addition, it
is possible to extend CAMP to use irreducible representations of Cartesian
tensors (basically symmetric traceless tensors), analogous to spherical
irreducible representations used in spherical tensor models. Leveraging
these symmetries and irreducible representations could further enhance
model accuracy and improve time and memory efficiency. These are
directions for future work.

Methods
Dataset
The LiPS dataset17 consists of 250001 structures of lithium phosphorus
sulfide (Li6.75P3S11) obtained from an AIMD trajectory. Each structure has
83atoms,with27Li, 12P, and44S.Thedataare randomizedbefore splitting
into training, validation, and test sets. The water dataset39 consists of 1593
water structures, eachwith 192 atoms, generatedwith AIMD simulations at
300 K. The data are randomly split into training, validation, and test sets
with a ratio of 90:5:5. The MD17 dataset8 consists of AIMD trajectories of

a

c

AA

AB

SP

b

Fig. 6 | Interlayer energetics of bilayer graphene. aBilayer graphene inAB,AA, and
saddle point (SP) stacking, where the blue solid dots represent atoms in the bottom
layer, and the green hollow dots represent atoms in the top layer. b Interlayer energy
Eint versus layer distance d of bilayer graphene in AB and AA stacking. The dots
represent DFT results. The layer distance is shifted such thatΔd = d− d0, where d0 =

3.4Å is the equilibrium layer distance. cGeneralized stacking fault energy of bilayer
graphene. This is obtained by sliding the top layer against the bottom layer at a fixed
layer distance of d0, where Δa1 and Δa2 indicate the shifts of the top layer against the
bottom layer, along the lattice vectors a1 and a2, respectively.
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several small organic molecules. The number of data points for each
molecule ranges from133,000 to 993,000.Our newbilayer graphene dataset
is derived from ref. 40, with 6178 bilayer graphene configurations from
stressed structures, atomic perturbations, and AIMD trajectories. The data
were generated using DFT calculations with the PBE functional64, and the
many-body dispersion correctionmethod65 was used to account for van der
Waals interactions. The data are split into training, validation, and test sets
with a ratio of 8:1:1.

Model training
The models are trained by minimizing a loss function of energy and forces.
For an atomic configuration C, the loss is

lðθ; CÞ ¼ wE
E � Ê
N

� �2

þ wF

PN
i¼1 k Fi � F̂ik2

3N
; ð13Þ

where N is the number of atoms, E and Ê are the predicted and reference
energies, respectively, andFi and F̂i are the predicted and reference forces on
atom i, respectively. Both the energyweightwE and forceweightwF are set to
1.The total loss tominimizeat eachoptimization step is the sumof the losses
of multiple configurations,

LðθÞ ¼
XB
j¼1

lðθ; CjÞ; ð14Þ

where B is the mini-batch size.
The CAMP model is implemented in PyTorch66 and trained with

PyTorch Lightning67. We trained all models using the Adam optimizer68

with an initial learning rate of 0.01, which is reduced by a factor of 0.8 if the
validation error does not decrease for 100 epochs. The training batch size
and allowed maximum number of training epochs vary for different data-
sets. Training is stopped if the validation error does not reduce for a certain
number of epochs (see Table S4 in the SI). We use an exponential moving
average with a weight 0.999 to evaluate the validation set as well as for the
final model.

Regarding model structure, Chebyshev polynomials of degrees up to
Nβ = 8 are used for the radial basis functions. Other hyperparameters
include the number of channels u, maximum tensor rank vmax, number of
layers T, and cutoff distance rcut. Optimal values of these hyperparameters
are searched for eachdataset, and typical values are aroundu=32, vmax ¼ 3,
T = 3, and rcut = 5Å. These result in small, parameter-efficient models with
fewer than 125k parameters. Detailed hyperparameters for each dataset are
provided in Table S5 in the SI.

Diffusivity
The diffusivity can be computed from MD simulations via the Einstein
equation, which relates the MSD of particles to their diffusion coefficient:

D ¼ lim
t!1

1
N

PN
i ∣riðtÞ � rið0Þ∣2

� �
2nt

; ð15Þ

where theMSD is computedas the ensemble average (denotedby 〈 ⋅ 〉) using
diffusing atoms, ri(t) represents the position of atom i at time t,N is the total
number of considered diffusion atoms,ndenotes the number of dimensions
(three here), and D is the diffusion coefficient. To solve for the diffusion
coefficientD, we employ a linear fitting approach as implemented in ASE69,
where D is obtained as the slope of the MSD versus 2nt.

The diffusivity of Li+ in LiPS was computed from MD simulations
under the canonical ensemble using the Nosé–Hoover thermostat. Simu-
lations were performed at a temperature of 520 K for a total of 50 ps, with a
timestep of 0.25 fs, consistent with the settings reported in the benchmark
study in ref. 47. We similarly computed the diffusivity of water; five simu-
lations were performed at 300 K, each using a timestep of 1 fs and running
for a total of 50 ps.

Stability criteria
For periodic systems, stability is monitored from the RDF g(r) such that a
simulation becoming “unstable” at time t when47

Z 1

0
k hgðrÞitþτ

t � hgðrÞi k d r>Δ; ð16Þ

where 〈 ⋅ 〉 denotes the average using the entire trajectory, h�itþτ
t denotes the

average in a time window [t, t + τ], and Δ is a threshold. In other words,
when the difference of the area under the RDF obtained from the time
window and the entire trajectory exceeds Δ, the simulation is considered
unstable.

This criterion cannot be applied to characterize the stability ofMD
simulations where large structural changes are expected, such as in
phase transitions or chemical reactions. However, for the LiPS system
studied here, no such events are expected, and the RDF-based stability
criterion is appropriate. We adopted τ = 1 ps and Δ = 1, as proposed
in ref. 47.

For molecular systems, the stability is monitored through the bond
lengths, and a simulation is considered “unstable” at time T when47

max
ði;jÞ2B

jrijðTÞ � bij j >Δ; ð17Þ

whereB denotes the set of all bonds,Δ is a threshold, rij(T) is the bond length
between atoms i and j at time T, and bij is the corresponding equilibrium
bond length, computed as the average bond length using the reference DFT
data. For theMD17 dataset, we adoptedΔ = 0.5Å as in ref. 47, and theMD
simulations were performed at 500 K for 300 ps with a timestep of 0.5 fs,
using the Nosé–Hoover thermostat.

Data availability
The new bilayer graphene dataset is provided at https://github.com/
wengroup/camp_run. The other datasets used in this work are publicly
available; the LiPS dataset: https://archive.materialscloud.org/record/2022.
45, the water dataset: https://doi.org/10.1073/pnas.1815117116, and the
MD17 dataset: http://www.sgdml.org.

Code availability
The code for theCAMPmodel is available at https://github.com/wengroup/
camp. Scripts for training models, running MD simulations, and analyzing
the results are at https://github.com/wengroup/camp_run.

Received: 18 November 2024; Accepted: 23 April 2025;

References
1. Huang, B. & von Lilienfeld, O. A. Ab initiomachine learning in chemical

compound space. Chem. Rev. 121, 10001–10036 (2021).
2. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121,

10142–10186 (2021).
3. Deringer, V. L. et al. Gaussian process regression for materials and

molecules. Chem. Rev. 121, 10073–10141 (2021).
4. Wen, M., Afshar, Y., Elliott, R. S. & Tadmor, E. B. Kliff: A framework to

develop physics-based and machine learning interatomic potentials.
Comput. Phys. Commun. 272, 108218 (2022).

5. Daw, M. S. & Baskes, M. I. Embedded-atom method: Derivation and
application to impurities, surfaces, and other defects in metals. Phys.
Rev. B 29, 6443–6453 (1984).

6. Behler, J. & Parrinello, M. Generalized neural-network representation
of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98,
146401 (2007).

7. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian
approximation potentials: The accuracy of quantum mechanics,
without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

https://doi.org/10.1038/s41524-025-01623-4 Article

npj Computational Materials |          (2025) 11:128 8

https://github.com/wengroup/camp_run
https://github.com/wengroup/camp_run
https://archive.materialscloud.org/record/2022.45
https://archive.materialscloud.org/record/2022.45
https://doi.org/10.1073/pnas.1815117116
http://www.sgdml.org
https://github.com/wengroup/camp
https://github.com/wengroup/camp
https://github.com/wengroup/camp_run
www.nature.com/npjcompumats


8. Chmiela, S. et al. Machine learning of accurate energy-conserving
molecular force fields. Sci. Adv. 3, e1603015 (2017).

9. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular
dynamics: A scalable model with the accuracy of quantum
mechanics. Phys. Rev. Lett. 120, 143001 (2018).

10. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. &
Müller, K.-R. Schnet – a deep learning architecture for molecules and
materials. J. Chem. Phys. 148, 241722 (2018).

11. Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O. Accurate and
transferable multitask prediction of chemical properties with an
atoms-in-molecules neural network. Sci. Adv. 5, eaav6490 (2019).

12. Gasteiger, J., Groß, J. &Günnemann, S. Directional message passing
for molecular graphs. In International Conference on Learning
Representations (ICLR) (2020).

13. Schütt,K.,Unke,O.&Gastegger,M.Equivariantmessagepassing for the
prediction of tensorial properties and molecular spectra. In International
Conference on Machine Learning, vol. 139, 9377–9388 (2021).

14. Ko, T.W., Finkler, J. A., Goedecker, S. &Behler, J. A fourth-generation
high-dimensional neural network potential with accurate
electrostatics including non-local charge transfer. Nat. Commun. 12,
398 (2021).

15. Unke, O. T. et al. Spookynet: Learning force fields with electronic
degrees of freedom and nonlocal effects. Nat. Commun. 12, 7273
(2021).

16. Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. Mace:
Higher order equivariant message passing neural networks for fast
and accurate force fields. Adv. Neural Inf. Process. Syst. 35,
11423–11436 (2022).

17. Batzner, S. et al. E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials.Nat. Commun. 13, 1–11
(2022).

18. Takamoto, S., Izumi, S. & Li, J. Teanet: Universal neural network
interatomic potential inspired by iterative electronic relaxations.
Comput. Mater. Sci. 207, 111280 (2022).

19. Simeon, G. & De Fabritiis, G. Tensornet: Cartesian tensor
representations for efficient learning of molecular potentials. In Oh, A.
et al. (eds.) Advances in Neural Information Processing Systems, vol.
36, 37334–37353 (2023).

20. Wen, M. & Tadmor, E. B. Uncertainty quantification in molecular
simulations with dropout neural network potentials. npj Comput.
Mater. 6, 124 (2020).

21. Zhu, A., Batzner, S., Musaelian, A. & Kozinsky, B. Fast uncertainty
estimates in deep learning interatomic potentials. J. Chem. Phys. 158,
164111 (2023).

22. Tan, A. R., Urata, S., Goldman, S., Dietschreit, J. C. B. & Gómez-
Bombarelli, R. Single-model uncertainty quantification in neural
network potentials does not consistently outperform model
ensembles. npj Comput. Mater. 9, 1–11 (2023).

23. Vita, J. A., Samanta, A., Zhou, F. & Lordi, V. Ltau-ff: Loss trajectory
analysis for uncertainty in atomistic force fields. ArXiv e-prints
2402.00853 (2024).

24. Dai, J., Adhikari, S. & Wen, M. Uncertainty quantification and
propagation in atomistic machine learning. Rev. Chem. Eng. 41,
333–357 (2024).

25. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E.
Neural message passing for quantum chemistry. In International
Conference on Machine Learning, 1263–1272 (2017).

26. Chen, C. & Ong, S. P. A universal graph deep learning interatomic
potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

27. Takamoto, S. et al. Towards universal neural network potential for
material discovery applicable to arbitrary combination of 45 elements.
Nat. Commun. 13, 1–11 (2022).

28. Deng, B. et al. Chgnet as a pretrained universal neural network
potential for charge-informedatomisticmodelling.Nat.Mach. Intell.5,
1031–1041 (2023).

29. Batatia, I. et al. A foundation model for atomistic materials chemistry.
ArXiv e-prints 2401.00096 (2023).

30. Xie, F., Lu, T., Meng, S. & Liu, M. Gptff: A high-accuracy out-of-the-
box universal AI force field for arbitrary inorganic materials. Sci. Bull.
69, 3525–3532 (2024).

31. Zhang, D. et al. Dpa-2: a large atomic model as a multi-task learner.
ArXiv e-prints 2312.15492 (2023).

32. Yang, H. et al. Mattersim: A deep learning atomistic model across
elements, temperatures and pressures. ArXiv e-prints 2405.04967
(2024).

33. Smith, J. S., Isayev, O. & Roitberg, A. E. Ani-1: an extensible neural
network potential with dft accuracy at force field computational cost.
Chem. Sci. 8, 3192–3203 (2017).

34. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S.M. & Tucker, G. J.
Spectral neighbor analysis method for automated generation of
quantum-accurate interatomic potentials. J. Comput. Phys. 285,
316–330 (2015).

35. Drautz, R. Atomic cluster expansion for accurate and transferable
interatomic potentials. Phys. Rev. B 99, 014104 (2019).

36. Shapeev, A. V. Moment tensor potentials: A class of systematically
improvable interatomic potentials. Multiscale Model.Multiscale
Model. Sim. 14, 1153–1173 (2016).

37. Dusson, G. et al. Atomic cluster expansion: Completeness, efficiency
and stability. J. Comput. Phys. 454, 110946 (2022).

38. Cheng, B. Cartesian atomic cluster expansion for machine learning
interatomic potentials. npj Comput. Mater. 10, 1–10 (2024).

39. Cheng, B., Engel, E. A., Behler, J., Dellago, C. & Ceriotti, M. Ab initio
thermodynamics of liquid and solid water. Proc. Natl Acad. Sci. 116,
1110–1115 (2019).

40. Wen,M. & Tadmor, E. B. Hybrid neural network potential formultilayer
graphene. Phys. Rev. B 100, 195419 (2019).

41. Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The
mlip package: moment tensor potentials withmpi and active learning.
Mach. Learn.: Sci. Technol. 2, 025002 (2020).

42. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. ArXiv e-prints 1512.03385 (2015).

43. Zee, A.Group Theory in a Nutshell for Physicists (Princeton University
Press,Princeton,NJ,USA, 2016). https://press.princeton.edu/books/
hardcover/9780691162690/group-theory-in-a-nutshell-for-
physicists.

44. Wen, M., Horton, M. K., Munro, J. M., Huck, P. & Persson, K. A. An
equivariant graph neural network for the elasticity tensors of all seven
crystal systems. Digital Discov. 3, 869–882 (2024).

45. Passaro, S. & Zitnick, C. L. Reducing so(3) convolutions to so(2) for
efficient equivariant gnns. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23 (2023).

46. Maennel, H., Unke, O. T. & Müller, K.-R. Complete and efficient
covariants for three-dimensional point configurationswith application
to learning molecular quantum properties. J. Phys. Chem. Lett. 15,
12513–12519 (2024).

47. Fu, X. et al. Forces are not enough: Benchmark and critical evaluation for
machine learning force fields with molecular simulations. Trans. Mach.
Learn. Res. https://openreview.net/forum?id=A8pqQipwkt (2023).

48. Zhang, Y., Xia, J. & Jiang, B. Physically motivated recursively
embedded atom neural networks: Incorporating local completeness
and nonlocality. Phys. Rev. Lett. 127, 156002 (2021).

49. Soper, A., Bruni, F. & Ricci, M. Site–site pair correlation functions of
water from 25 to 400 c: Revised analysis of new and old diffraction
data. J. Chem. Phys. 106, 247–254 (1997).

50. Skinner, L. B., Benmore, C. J., Neuefeind, J. C. & Parise, J. B. The
structure of water around the compressibility minimum. J. Chem.
Phys. 141, 214507 (2014).

51. Marsalek, O. &Markland, T. E. Quantum dynamics and spectroscopy
of ab initio liquid water: The interplay of nuclear and electronic
quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).

https://doi.org/10.1038/s41524-025-01623-4 Article

npj Computational Materials |          (2025) 11:128 9

https://press.princeton.edu/books/hardcover/9780691162690/group-theory-in-a-nutshell-for-physicists
https://press.princeton.edu/books/hardcover/9780691162690/group-theory-in-a-nutshell-for-physicists
https://press.princeton.edu/books/hardcover/9780691162690/group-theory-in-a-nutshell-for-physicists
https://press.princeton.edu/books/hardcover/9780691162690/group-theory-in-a-nutshell-for-physicists
https://openreview.net/forum?id=A8pqQipwkt
https://openreview.net/forum?id=A8pqQipwkt
www.nature.com/npjcompumats


52. Zhang, L. et al. End-to-end symmetry preserving inter-atomic
potential energy model for finite and extended systems. In Bengio, S.
et al. (eds.) Advances in Neural Information Processing Systems, vol.
31 (2018).

53. Gasteiger, J., Becker, F. & Günnemann, S. Gemnet: Universal
directional graph neural networks for molecules. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P. & Vaughan, J. W. (eds.)
Advances in Neural Information Processing Systems, vol. 34,
6790–6802 (2021).

54. Liu, Y. et al. Spherical message passing for 3D molecular graphs. In
International Conference on Learning Representations https://
openreview.net/forum?id=givsRXsOt9r (2022).

55. Christensen, A. S. & von Lilienfeld, O. A. On the role of gradients for
machine learning of molecular energies and forces.Mach. Learn.: Sci.
Technol. 1, 045018 (2020).

56. Musaelian, A. et al. Learning local equivariant representations for
large-scale atomistic dynamics. Nat. Commun. 14, 1–15 (2023).

57. Faber, F. A., Christensen, A. S., Huang, B. & von Lilienfeld, O. A.
Alchemical and structural distribution based representation for
universal quantum machine learning. J. Chem. Phys. 148, 241717
(2018).

58. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for
hydrocarbons with intermolecular interactions. J. Chem. Phys. 112,
6472–6486 (2000).

59. O’Connor, T. C., Andzelm, J. & Robbins, M. O. AIREBO-m: A reactive
model for hydrocarbons at extreme pressures. J. Chem. Phys. 142,
024903 (2015).

60. Los, J. H. & Fasolino, A. Intrinsic long-range bond-order potential for
carbon: Performance in monte carlo simulations of graphitization.
Phys. Rev. B 68, 024107 (2003).

61. Lennard-Jones, J. E. Cohesion. Proc. Phys. Soc. 43, 461 (1931).
62. Geim, A. K. & Grigorieva, I. V. Van der waals heterostructures. Nature

499, 419–425 (2013).
63. Wen,M.,Carr, S., Fang,S., Kaxiras, E.&Tadmor, E.B.Dihedral-angle-

corrected registry-dependent interlayer potential for multilayer
graphene structures. Phys. Rev. B 98, 235404 (2018).

64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

65. Tkatchenko, A., DiStasio, R. A., Car, R. & Scheffler, M. Accurate and
efficient method for many-body van der Waals interactions. Phys.
Rev. Lett. 108, 236402 (2012).

66. Paszke, A. et al. Pytorch: An imperative style, high-performance deep
learning library. ArXiv e-prints 1912.01703 (2019).

67. pytorch-lightning (2024). https://github.com/Lightning-AI/pytorch-
lightning. [Online; accessed 2. Oct. 2024].

68. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
ArXiv e-prints 1412.6980 (2014).

69. Larsen, A. H. et al. The atomic simulation environment—a Python
library for working with atoms. J. Phys.: Condens. Matter 29, 273002
(2017).

70. Hu,W. et al. Forcenet: Agraphneural network for large-scalequantum
calculations. ArXiv e-prints 2103.01436 (2021).

71. Gasteiger, J., Yeshwanth, C. & Günnemann, S. Directional message
passing on molecular graphs via synthetic coordinates. In Ranzato,

M., Beygelzimer, A., Dauphin, Y., Liang, P. & Vaughan, J. W. (eds.)
Advances in Neural Information Processing Systems, vol. 34,
15421–15433 (2021).

72. Haghighatlari, M. et al. Newtonnet: a newtonian message passing
network for deep learning of interatomic potentials and forces. Digit.
Discov. 1, 333–343 (2022).

Acknowledgements
Thiswork is supported by the National Science Foundation under Grant No.
2316667, and supported by the Center for HPC at the University of
Electronic Science and Technology of China. This work also uses
computational resourcesprovidedby theResearchComputingDataCoreat
the University of Houston.

Author contributions
M.W.: project conceptualization, model development, data analysis, writing
- original draft, writing - review, and supervision. W.F.H, J.D. and S.A.: data
analysis and writing - review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-025-01623-4.

Correspondence and requests for materials should be addressed to
Mingjian Wen.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41524-025-01623-4 Article

npj Computational Materials |          (2025) 11:128 10

https://openreview.net/forum?id=givsRXsOt9r
https://openreview.net/forum?id=givsRXsOt9r
https://openreview.net/forum?id=givsRXsOt9r
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Lightning-AI/pytorch-lightning
https://doi.org/10.1038/s41524-025-01623-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjcompumats

	Cartesian atomic moment machine learning interatomic potentials
	Results
	Model Architecture
	Atomic graph
	Radial basis
	Angular part
	Atomic moment
	Hyper moment
	Message Passing
	Output
	Computational complexity

	Inorganic crystals
	Bulk water
	Small organic molecules
	Two-dimensional materials

	Discussion
	Methods
	Dataset
	Model training
	Diffusivity
	Stability criteria

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




